ImageVerifierCode 换一换
格式:DOC , 页数:28 ,大小:1.37MB ,
资源ID:782908      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-782908-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012高考生物总复习知识点总结:第五单元 生物的遗传、变异与进化.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012高考生物总复习知识点总结:第五单元 生物的遗传、变异与进化.doc

1、第五单元 生物的遗传、变异与进化(包括遗传的物质基础、遗传规律、伴性遗传、细胞质遗传、基因突变、染色体变异、现代进化理论)5.1证明DNA是遗传物质的实验(1)肺炎双球菌的转化实验格里菲思实验第一组注射活R型(无毒)健康第三组注射死S型(加热)健康第二组活S型(有毒)注射死亡在死S细菌中存在某种“转化因子”,使R型细菌转化成S细菌设想第四组分离死S型活R型注射死亡活S型注射死亡 加入R型(无毒)R型(无毒)R型(无毒)DNA蛋白质或荚膜多糖DNA加DNA酶活S型(有毒)分离加入加入培养培养培养R型(无毒)R型(无毒)S型R型艾弗里的实验结论DNA是“转化因子”,即遗传物质5.2证明DNA是遗传

2、物质的实验(2)T2噬菌体感染细菌实验培养含放射性35S不含放射性离心搅拌加入不含放射性含放射性32P培养离心搅拌加入大肠杆菌培养液感染使在细菌体外的噬菌体分离检测上清液和沉淀物中的放射性35S标记的噬菌体32P标记的噬菌体新形成的噬菌体没检测到35S新形成的噬菌体检测到32P实线表示不带放射性虚线表示带放射性说明5.3证明RNA是遗传物质的实验烟草花叶病毒的感染实验蛋白质RNA烟草花叶病毒(TMV)烟叶花叶病感染感染RNA酶烟叶健康感染烟叶健康蛋白质分离感染烟叶花叶病RNATMV5.4 DNA是遗传物质的理论证据(遗传物质的必备条件)分子结构相对稳定1、稳定性能够自我复制,使前后代保持一定的

3、连续性2、连续性能够控制生物的性状和新陈代谢3、控制性能够产生可遗传的变异4、变异性能够贮藏大量遗传信息5、信息性理论证据5.5核酸是生物的遗传物质1、核酸是一切生物的遗传物质2、DNA是主要的遗传物质3、含DNA的生物DNA是遗传物质,RNA不是4、不含DNA的生物(RNA病毒)RNA才是遗传物质ACGGATCT3端3端5端5端DNA的分子结构氢键5.6 DNA的组成单位、分子结构和结构特点碱基磷酸脱氧核糖脱氧核苷脱氧核苷酸基本组成单位DNA分子的结构特点单脱氧核苷酸经磷酸二酯键连接成脱氧核苷酸长链两条脱氧核苷酸长链反向平行由氢键连接成双链DNA分子碱基遵循碱基互补配对原则进行配对,碱基对由

4、氢键连接起来。即:G C;A T。两条链向右旋转形成规则的双螺旋结构双链结构的外侧由磷酸和脱氧核糖交替排列形成骨架,碱基排在双链的内侧一条链的碱基排列顺序一旦确定,另一条链的碱基排列顺序也随之确定理论上链上碱基的排列顺序是任意的,这构成了DNA分子的多样性DNA的碱基排列顺序贮藏着生物遗传信息,DNA分子的多样性是生物多样的根源123456784n种5.7 由碱基互补配对原则引起的碱基间关系A=T G=CA1=T2 G1=C2A2=T1 G2=C1A= A1+A2 T=T1+T2 G=G1+G2 C=C1+C2A+G=T+C A+C=T+G12345基本关系根据第一链计算第二链5.8 DNA分

5、子的复制5端3端3端5端5端3端解旋方向5端3端3端3端5端5端ACGTTGCA32P32P亲代(0代)1代2代n代TGCAACGTTGCAACGTTGCAACGTACGTTGCA32P32P31P31P31PACGTTGCATGCAACGT32P31P32P31P子代DNA分子中含亲代链的比例子代DNA链中含亲代链的比例11/21/2n-11/21/41/2n复制(半保留复制)15N(重链)15N(重链)15N(重链)14N(轻链)从每一代DNA分子中取等量的DNA进行氯化铯密度梯度离心重带轻带中间带全轻半重半轻半重半轻全重亲代代代低高氯化铯密度DNA带5.9 DNA半保留复制的实验证明5.

6、10基因的结构及控制蛋白质的合成RNA聚合酶结合位点非编码区编码区非编码区原核生物基因的结构放大基因控制蛋白质的合成TGCATGCATGCAACGTACGTACGTUGCACGUACGUACGUAUGCAUGCA苏酪精缬转录翻译基因(编码区)mRNAtRNA蛋白质(多肽)转录RNA聚合酶结合位点非编码区编码区非编码区外显子外显子内含子内含子外显子ABCDE真核生物基因的结构转录ABCDEACE加工翻译初级RNAmRNA蛋白质(多肽)基因控制蛋白质的合成5.11染色体组与基因组比较概念示例染色体组正常配子中的全部染色体数称为一个染色体组,用N表示果蝇:N=4基因组概 念某生物DNA分子所携带的全

7、部遗传信息叫基因组。包括核基因组和质基因组(线料体基因组和叶绿体基因组)人:23+1+线粒体DNA单倍体基因组有性别生物:N+1(N个DNA+1个性染色体DNA组成)无性别生物:N(N个DNA分子组成)人:23+1玉米:10原核生物基因组一个DNA分子组成(或加上质粒DNA)细菌DNA线粒体基因组线粒体中一个DNA分子所携带的遗传信息(见后述)线粒体DNA叶绿体基因组叶绿体中一个DNA分子所携带的遗传信息叶绿体DNA区别与联系染色体组由正常配子中的染色体数目构成,只包含一条性染色体基因组由一半常染色体、两条性染色体和细胞质中的DNA分子组成5.12人类基因组研究5.12.1人类基因组计划(HG

8、P)大事记人类基因组计划大事记1985年美国科学家诺贝尔奖获得者杜伯克首先提出了人类基因组计划(HGP)1990年10月1日经美国国会批准美国HGP正式启动,预计投资30亿美元,历时15年,在2005年完成。先后共有美、英、日、法、德、中六国参加,分别负担了其中54%、33%、7%、2.8%、2.2%和1%的研究工作。1998年5月全球最大的DNA自动测序仪厂家在美国马里兰州罗克威尔设立了Celera(塞莱拉)基因组学公司,声称在3年内完成人类基因组的序列测定,另外有一些私营机构也涉足这一领域,目的都是为了申请专利,垄断人类基因信息资源。至此形成公私两大阵营。1998 年 10 月人类基因组计

9、划的公立阵营宣布提前于 2001 年完成人类基因组的工作草图,整个终图的完成期将从 2005 提前到 2003 年。1999年9月我国搭上基因组研究的末班车,加入该计划并负责3号染色体上3000万个碱基对的测序工作,成为参与人类基因组计划唯一的发展中国家。这1%的测序任务,带给中国的利益是长远的,我们不仅因此可以分享整个计划的成果,拥有相关事务的发言权,而且建立了自己的研究队伍,技术水平走在了世界的前列。2000年3月14日美国总统克林顿和英国首相贝理雅发表联合声明,呼吁将人类基因组研究成果公开,以便世界各国的科学家都能自由地使用这些成果。2000年4月底中国科学家按照国际人类基因组计划的部署

10、,完成了百分之一人类基因组的“工作框架图”。2000年6月26日美国白宫召开会议,宣布人类基因组“工作框架图”完成。2001年2 月15日人类基因组计划公立阵营在当日出版的自然杂志公布人类基因组测序草图。2001年2 月16日塞莱拉公司在当日出版的科学杂志上公布人类基因组测序草图。2006年5月18日美国和英国科学家在英国自然杂志网络版上发表了人类最后一个染色体1号染色体的基因测序。科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的9999。历时16年的人类基因组计划书写完了最后一个章节。5.12.2人类基因组计划(HGP)的主要内容

11、主要内容遗传图又称连锁图,它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM(厘摩))为图距的基因组图。遗传图的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。物理图物理图是指有关构成基因组的全部基因的排列和

12、间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图。因此,DNA物理图是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导

13、DNA测序的蓝图。广义地说,DNA测序从物理图制作开始,它是测序工作的第一步。序列图随着遗传图和物理图的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图。转录图(基因图)基因图是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。其原理是:所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由mRNA编码的,这样可以把

14、mRNA通过反转录酶合成cDNA或称作EST的部分的cDNA片段,也可根据mRNA的信息人工合成cDNA或cDNA片段,然后,再用这种稳定的cDNA或EST作为“探针”进行分子杂交,鉴别出与转录有关的基因。基因图谱的意义是:在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。5.12.3人类与其他物种的基因组比较(大约)物种碱基对数量基因数量物种碱基对数量基因数量黴浆菌580,000500酿酒酵母12,000,0

15、005,538肺炎双球菌2,200,0002,300黑腹果蝇180,000,00013,350流感嗜血杆菌4,600,0001,700家鼠2,500,000,00029,000大肠杆菌4,600,0004,400人类3,000,000,00027,0005.12.4 人类基因组24条染色体上的基因数目和申请的专利数目(截止2006年)染色体编号基因数目专利数目染色体编号基因数目专利数目1号3,14150413号477972号1,77633014号8211553号1,44530715号9151414号1,02321516号1,1391925号1,26125417号1,4713136号1,4012

16、2518号408747号1,41023219号1,7152708号95220820号7621789号1,08623321号3576610号1,04217022号10665711号1,626312X1,09020012号1,347252Y14414合计17,5103,242合计9,4052,357累 计26,9155,599【说明】目前人们对于基因资源是否应该登记专利仍有争议。由于学术研究并非营利性,因此通常不受这些专利所拘束。此外由于美国政府近年来将专利申请条件提高,因此与DNA有关的专利许可,在2001年之后已逐渐减少。5.12.5 人类基因组研究的意义与展望对于各种疾病尤其是对各种遗传病的

17、诊断、治疗具有划时代的意义对于深入了解基因表达的调控机制、细胞的生长、分化和个体发育的机制以及生物进化等也具有重要意义推动生物高新技术的发展,并产生巨大的经济效应123你知道吗 在人体全部22对常染色体中,1号染色体包含的基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。DNARNA逆转录转录蛋白质(性状)翻译复制复制5.13遗传的中心法则5.14基因工程的基本内容质粒DNA连接酶酶目的基因DNA获取DNA获取质粒细菌质粒DNA用同一种限制性内切酶切割重组质粒细胞目的基因将

18、目的基因导入受体细胞DNA重组质粒细胞增殖目的基因产物将目的基因导入受体细胞目的基因与运载体结合提取目的基因目的基因的检测和表达5.15基因分离定律中亲本的可能组合及其比数亲本组合AAAAAAAaAAaaAaAaAaaaaaaa基因型比AA1AA Aa1 1Aa1AA Aa aa1 2 1Aa aa1 1aa1表现型比显性1显性1显性1显性隐性3 1显性隐性1 1隐性15.16基因分离定律的特殊形式特殊形式亲本组合子代的基因型比子代的表现型比(一般形式)AaAaAA Aaaa121显性隐性31显性相对性AaAaAA Aaaa121显性相对显性隐性121并显性(MN血型)LM LNLM LNLM

19、 LMLM LNLN LN121显性并显性显性121复等位基因遗传物种中存在三个以上等位基因,而每一个体只含两个等位基因或两个相同的基因,基因之间存在显隐关系或其它关系。如ABO血型的遗传:IA、IB对i为显性,IA对IB并显性。显性纯合致死AaAaAaaa21显性隐性21隐性纯合致死AaAaAAAa12显性单性隐性配子致AaAaAAAa11显性单性显性配子致死AaAaAaa a 11显性隐性11伴性遗传基因在性染色体上,子代表现型与性别有关,形式多样,在后面有专题讨论。X上的致死效应见专题5.23 (P53)5.17基因自由组合定律的一般特点P双显AABBA显(AAbb)Aabb双隐(aaB

20、B)B显AaBb双显F1配子ABAbaBabABAABB(双显)AABb(双显)AaBB(双显)AaBb(双显)AbAABb(双显)AAbb(A显)AaBb(双显)Aabb(A显)aBAaBB(双显)AaBb(双显)aaBB(B显)aaBb(B显)abAaBb(双显)Aabb(A显)aaBb(B显)aabb(双隐)F1表现型表现型同亲本亲本为AABBaabb时:10/16(9/16 + 1/16)亲本为AAbbaa BB时:6/16(3/16 + 3/16)双显A显B显双隐9331比数4种种类9种基因型(AABB、AABb、AaBB、AaBb、AAbb、aaBB、Aabb、aaBb、aabb)

21、F25.18遗传定律中各种参数的变化规律遗传定律亲本中包含的相对性状对数F1F2遗传定律的实质包含等位基因的对数产生的配子数配子的组合数表现型数基因型数性 状分离比分离定律112423(31)F1在减数分裂形成配子时,等位基因随同源染色体的分开而分离。自由组合定 律2241649(31)2F1在减数分裂形成配子时,等位基因随同源染色体分离的同时,非同源染色体上的非等位基因进行自由组合。33864827(31)344162561681(31)4nn2n4n2n3n(31)n将自由组合定律分解成分离定律根据亲本的基因型或表现型推出子代基因型概率或表现型概率(或者根据子代的表现型比或基因型比推出亲本

22、的表现型或基因型)得出最后结果方法一分离定律法例2用绿圆豌豆与黄圆豌豆进行杂交,得到子代四种豌豆:黄圆196,黄皱67,绿圆189,绿皱61。写出亲本的基因型。(已知黄受Y、圆受R控制)解分解成分离定律的子代表现型推出亲本的基因型子代表现型比亲代基因型得出结果亲本绿圆豌豆的基因型是yyRr,黄圆豌豆的基因型是YyRr圆(196+189)皱(67+61)=31黄(196+67)绿(189+61)=11YyyyRrRr基因型为AaBb(甲)和Aabb(乙)的亲本杂交,求子代中同亲本的基因型和表现型的概率解分解成分离规律的杂交组合AaBbAabbAaAaBbbb1/4AA 1/2Aa 1/4aa1/

23、2Bb 1/2bb推出各组合的基因型概率和表现型概率计算结果:例1示例3/4A显1/4a隐1/2B显1/2b隐子代基因型为AaBb(同亲本甲)的概率是:1/2Aa1/2Bb1/4子代基因型为Aabb(同亲本乙)的概率是:1/2 Aa1/2bb1/4子代基因型同亲本的概率是:1/41/41/2ii i子代表现型同亲本的概率是:(3/4A显1/2B显)+(3/4A显1/2b隐)=3/45.19自由组合遗传题的快速解法番茄的紫茎(A)对绿茎(a),缺刻叶(B)对马铃薯叶(b)均为显性。亲本紫缺番茄与紫马番茄杂交,子代出现了紫缺、紫马、绿缺、绿马四种番茄。求亲本的基因型和子代的表现型比。根据亲本和子代

24、的表现型写出亲本和子代的基因式(如图)。紫缺紫马A-B-A-bb紫缺紫马绿缺绿马A-B-A-bbaaB-aabb基因式基因式(亲本)(子代)根据基因式推出亲本基因型。由于子代中有隐性个体出现,因此亲本的基因型是AaBb(紫缺)和Aabb(紫马)。利用分离定律法推出子代表现型比(如图)。3紫 1绿 1缺 1马3紫缺3紫马1绿缺1紫马解根据亲本和子代的表现型写出亲本和子代的基因式根据基因式推出基因型(此方法只适于亲本和子代表现型已知且显隐关系已知时)方法二基因式法示例因为子代的表现型比之和就是子代的组合数,所以根据子代的组合数可推出亲本产生的可能的配子种数。根据亲本可能的配子种数可推出亲本可能的基

25、因型。再根据亲本相关信息最后确定亲本的基因型或表现型。方法三逆推法番茄的紫茎(A)对绿茎(a),缺刻叶(B)对马铃薯叶(b)均为显性。亲本紫缺番茄与绿缺番茄杂交,子代出现了3紫缺、1紫马、3绿缺、1绿马四种番茄。求亲本的基因型。推出亲本产生的可能的配子种数由题意可知,子代的表现型比之和为(3+1+3+1),8种组合数,由此可知亲本产生的配子种类为: 一个亲本产生4种配子,另一亲本产生2种配子(因为只能是4种配子与2种配子的组合才有8种组合数,因为一方产生8 种配子,另一方产生1种配子的组合不可能)。推出亲本的基因型要产生4种配子,基因型必为AaBb(双显性)。所以亲本紫缺的基因型为AaBb。另

26、一亲本只产生2种配子,因为表现型为绿缺,那么基因为aaBb。验证不错。解示例熟练运用三种方法可以进行口算心算,大大提高解题速度。三种方法中“分离定律法”最适用,适合各种情况。提倡使用该方法。后两种方法的应用需要一定条件,有一定局限性。注5.20自由组合定律中基因的相互作用作用类型特 点举 例加强作用互补作用(球形)AAbbaaBB(球形)AaBb(扁盘形)A-B-(扁盘)A-bb(球形)aaB-(球形)aabb(长形)9/163/163/161/16南瓜 PF1F2只有一种显性基因或无显性基因时表现为某一亲本的性状,两种显性基因同时存在时(纯合或杂合)共同决定新性状。F2表现为97(白花)CC

27、ddccDD(白花)CcDd(紫花)C-D-(紫花)C-dd(白花)ccD-(白花)ccdd(白花)9/163/163/161/16香豌豆 PF1F2累加作用两种显性基因同时存在时产生一种新性状,单独存在时表现相同性状,没有显性基因时表现为隐性性状。F2表现为961重叠作用不同对基因对表现型产生相同影响,有两种显性基因时与只有一种显性基因时表现型相同。没有显性基因时表现为隐性性状。F2表现为151(三角形果)EEFFeeff(卵形果)EeFf(三角形果)E-F-(三角)E-ff(三角)eeF-(三角)eeff(卵形)9/163/163/161/16荠菜 PF1F2抑制作用显性上位一种显性基因抑

28、制了另一种显性基因的表现。F2表现为1231右例中I基因抑制B基因的表现。I决定白色,B决定黑色,但有I时黑色被抑制(白色)BBIIbbii(褐色)BbIi(白色)B-I-(白色)bbI-(白色)B-ii(黑色)bbii(褐色)9/163/163/161/16狗 PF1F2隐性上位一对基因中的隐性基因对另一对基因起抑制作用。F2表现为934右例中c纯合时,抑制了R和r的表现。(黑色)RRCCrrcc(白色)RrCc(黑色)R-C-(黑色)rrC-(浅黄)R-cc(白色)rrcc(白色)9/163/163/161/16家鼠 PF1F2抑制效应显性基因抑制了另一对基因的显性效应,但该基因本身并不决

29、定性状。F2表现为133右例中C决定黑色,c决定白色。I为抑制基因,抑制了C基因的表现。(白色莱杭)IICCiicc(白色温德)IiCc(白色)I-C-(白色)I-cc(白色)iiC-(黑色)iicc(白色)9/163/163/161/16家鸡 PF1F2作用类型F2表现型比作用类型F2表现型比作用类型F2表现型比互补作用97重叠作用151隐性上位934累加作用961显性上位1231抑制效应1335.21 杂交育种5.21.1培育显性基因(A)控制的优良品种一对相对性状控制后代纯合的速率取决于等位基因的对数和自交的代数公式(n表示自交的代数;r表示等位基因对数)多对相对性状控制方法同上。纯合更

30、加困难,育种难度大原始材料培育目标AaAA育种方法连续自交,连续选择,直到基本不发生性状分离AaAA41aa41AA41Aa21aa41AA81Aa41aa81AA161Aa81aa161AA321Aa161aa321AA81aa81aa41AA41AA161aa161aa81AA81AA41aa41Aa2n1AAaa自交代数杂合体纯合体自交过程(原理)1614121812n10234n1161543218710(每代保留并种植)(每代淘汰直到几乎不出现) 原始材料培育目标Aaaa育种方法自交,选择aaAaAaAAaa保留推广淘汰5.21.2培育隐性基因(a)控制的优良品种5.22 人类的X染

31、色体与Y染色体X的非同源部分Y的非同源部分X和Y的同源部分眼白化Xg血型磷皮病血友病红色盲长毛耳X染色体Y染色体总色盲表皮泡化症眼球网膜色素睾丸决定因子性染色体的结构巴氏小体:失活浓缩的X染色体,通过染色后可见,女性一个,男性无。Y小体:荧光染料染色后可见。男性有。女性无。性染色体由常染色体进化而来,随着进化的深入,同源部分越来越少,或者Y染色体逐渐缩短,最后消失。如蝗虫中雄蝗2N=23(XO),雌蝗2N=24(XX)。因此X和Y染色体越原始,同源区段就越长,非同源区段就越短。据研究,人类Y染色体产生之初含有基因约1400个,现在仅剩下45个基因。再经1500万年人类的Y染色体将彻底消失。性染

32、色体的起源5.23 人类性别畸型及其原因精 子细卵胞性染色体组型正常异 常X同源染色体不分离姐妹染色单体不分离XXO正 常XXX(正常)XXX(超雌)XO(卵巢退化)YXY(正常)XXY(睾丸退化)YO(不能存活)异常同源染色体不分离XYXXY(睾丸退化)XXXY(同上)XY(正常)姐妹染色单体不分离XXXXX(超雌)XXXX(超雌)XX(正常)YYXYY(多数不育)XXYY(未见)YY(不能存活)同源染色体不分离姐妹染色单体不分离OXO(卵巢退化)XX(正常)OO(不能存活)5.24性别分化与环境的关系原理因素性激素(内部环境)的影响温度(外部环境)的影响示例鸡的性反转(必修本P94)ZZ(

33、幼体)ZZ(成体)雌激素ZZZZZZ生殖非洲蛙(Xenopus)性反转实验。受精卵201/2蛙(XX)1/2蛙(XY)发育受精卵30全部蛙(1/2XX,1/2XY)发育某些XY型性别决定的蛙类:5.25伴性遗传的特点说明:这里讨论致病基因的遗传。隐性遗传表示隐性基因致病,显性遗传表示显性基因致病。特 点示 例伴X遗传隐性遗传交叉遗传:父传女,母传子。男(雄)性患者多于女(雌)性患者。男(雄)性患者的致病基因均由母亲传递。男(雄)性患者的女儿均为携带者。近亲婚配发病率高。XaYXAXAXAXaXAY患者携带者XAYXAXaXaYXAXA患者携带者XAXaXAY显性遗传患者双亲中至少一个是患者。女

34、(雌)性患者多于男(雄)性患者。女(雌)性患者的子女患病机会均等。男(雄)性患者的女儿全部患病。未患病者的后代不会患病(真实遗传)。XaYXAXaXAXa XaXa XAY XaYXAYXaXaXAXa XaY患者患者患者患者患者伴Y遗传不同源时基因无显隐性关系。基因只能由父亲传给儿子并表现出来。具家族同源性,用于刑事侦探和亲子鉴定。(短硬毛)XbYBXbXb(正常硬毛)(短硬毛)XbXb XaYB(正常硬毛) 果蝇硬毛遗传(与X染色体同源):5.26伴性遗传中的致死效应X染色体上隐性基因花粉(雄配子)致死X染色体上隐性基因雄性个体致死宽叶XBXBXbY窄叶宽叶XBXb XbY窄叶XBXbY(

35、死)XBY宽叶XBXbY(死)XbY窄叶XbXBY宽叶11(特点:无窄叶雌株)剪秋罗植物叶型遗传:XAXaXAYXAXAXAXaXAYXaY正常正常正常正常正常死亡性别区分并不难同型隐性异型显5.27通过性状识别性别的杂交设计显性隐性隐性显性XaXaXAYXAXaXaY例果蝇眼色遗传红眼白眼红眼白眼XY型性别决定显性隐性隐性显性ZOsWZosZosZosWZOsZos例家蚕油脂皮肤遗传(油脂皮肤透明)正常蚕油蚕正常蚕油蚕ZW型性别决定5.28人类常染色体遗传病与伴X遗传病的比较常染色体遗传病X染色体遗传病显性遗传(显性基因致病)遵循的定律分离定律致病基因位置常染色体X染色体发病概率男女均等女性

36、多于男性判断方法无特殊的判断方法,根据相关特点判断隐性遗传(隐性基因致病)遵循的定律分离定律致病基因位置常染色体X染色体发病概率男女均等男性多于女性判断方法父母正常有女儿患病时,一定是常染色体隐性遗传根据相关特点判断5.29细胞质遗传的一般形式PF1母方性状父方性状母方性状5.30核质互作雄性不育遗传情况表细胞核基因 ( r不育)细胞质基因表现型RRRrrr正常基因 N不育基因 S(N)RR 可育S(RR) (可育)N(Rr) (可育)S(Rr) (可育)N(rr) (可育)S(rr) (不育)5.31植物的三系配套杂交(选学)三系不育系恢复系保持系S(rr)N(rr)N(RR)不育系保持系杂

37、交种 S(rr)N(rr) 不育系恢复系 S(rr)N(RR) 不育系S(rr)S(Rr)(可育)5.32判断核、质遗传的方法看基因的来源看子代分离比看正反交结果细胞核遗传细胞质遗传来源于核来源于质一定的分离比无分离比或无一定的分离比一致不一致符合任何一条即可判断312编码区是连续的线粒体基因组基因13种多肽链22种tRNA2种rRNA37个,共编码结构环状双链DNA,共16569个碱基对外环富含G,称为重链,内环富含C称轻链重链含28个基因,轻链含9个基因氧化磷酸化酶系统需要的80多种蛋白质亚基,线粒体基因组仅编码13种。注意5.33人类线粒体基因组5.34细胞核遗传与细胞质遗传的比较细胞核

38、遗传细胞质遗传遗传本质基因位于细胞核的染色体上基因位于细胞质的线粒体和叶绿体基因存在形成成对存在单个存在基因的传递方式父母双方传递仅由母方传递遗传特点孟德尔遗传母系遗传子代表现型由显隐性关系决定完全由母方决定(大多表现母方性状)显隐性关系有没有子代分离比有一定的分离比无一定的分离比(可能出现分离)正反交结果相同(伴性遗传时可有例外)不同配子中基因的分配方式减半均分随机分配基因突变频率低,不一定表现出来频率高,突变的一定要表现出来遗传信息传递方式中心法则遗传自主性全自主半自主(受核基因控制)转录翻译系统各自独立转录场所细胞核线粒体和叶绿体翻译场所细胞质中的核糖体线粒体和叶绿体中的核糖体对性状的控

39、制控制全部性状仅控制线粒体和叶绿体的少量性状5.35细胞质遗传与伴性遗传的比较细胞质遗传伴性遗传伴X遗传伴Y遗传遗传方式母系遗传孟德尔遗传(分离定律)只在雄性个体中传递基因位置线粒体上 叶绿体上X染色体上Y染色体上亲本枝条子代植株绿色白色正交绿色白色绿色反交白色正反交结果(随母遗传)正交白眼红眼XRYXrXrXRXrXrY红眼白眼红眼白眼反交XRXRXrYXRXrXRY红眼红眼亲本眼色子代眼色不一致。示例:紫茉莉枝条叶色遗传(不随母遗传)不一致。示例:果蝇眼色遗传与X不同源时,无正反交。与X同源时,正反交结果不一致。遗传特点母亲传给子女父亲传给女儿,母亲传给子女父亲传给儿子应用确定母子、母女关

40、系遗传咨询、遗传病预防确定父子关系5.36生物变异的类型可遗传的变异不遗传的变异基因变异染色体变异基因突变基因重组结构变异数目变异变异的本质基因结构改变基因重新组合染色体结构异常染色体数目异常环境改变(遗传物质不改变)遗传情况按一定方式遗传和表现不遗传鉴别方法观察、杂交、测交观察、染色体检查改变环境条件意义产生新基因,为基因重组和进化提供素材产生新基因型产生新品种关系人类遗传健康关系人类遗传健康。植物多倍体能改良植物性状。改变环境条件,也能影响性状应用价值诱变育种遗传病筛查杂交育种遗传病筛查遗传健康遗传病筛查单倍体育种多倍体育种改变环境条件,获得优质高产。联系基因性状环境相互作用不遗传的变异(

41、直接影响)基因重组 基因突变 染色体变异诱因(间接影响)可遗传的变异表达5.37基因突变基因突变本质碱基对替换点突变。一对碱基被另一对碱基取代碱基对增添移码突变。插入点处编码碱基后移;缺失点处编码碱基前移碱基对缺失发生时期细胞分裂(有丝分裂、减数分裂)的DNA复制时类型体细胞突变发生在胚胎发育过程中,发生的越晚对个体影响越晚(小)。配子突变发生在配子形成时,影响个体的一生。突变因素生理因素辐射 激光 温度化学因素秋水仙素 亚硝酸 碱基类似物生物因素病毒 某些细菌特点普遍性小致病毒大到人类均发生基因突变。分自然突变和人工诱变。随机性随机发生,在个体发育的整个阶段都可发生。低频性高等生物的突变频率

42、在10-510-8之间有害性大多有害,少量有利,有的突变是中性的。生物的长期进化中已形成了对环境的适应,再突变一般有害。不定向性(多向性)产生等位基因或复等位基因Bb2b1b3Aa产生非等位基因显性突变:Aa隐性突变:aA回复突变:A a突变后果点突变同义突变:突变前后密码子同义。蛋白质结构不变。错义突变:编码的氨基酸改变,一种氨基酸被另一种氮基酸取代无义突变:突变后的密码子为终止码。使合成提前终止。移码突变引起一系列氨基酸的改变。导致肽链延长或缩短或无法终止。表现形式形态突变型外形改变:人类白化、果蝇白眼、葡萄无籽致死突变型引起个体死亡或配子死亡:植物的白化等条件致死型在一定条件下致死:T4

43、噬菌体温敏型在25时存活,42时死亡生化突变型无形态效应,但生化功能改变:微生物的营养缺陷型应用自然突变的应用利用白化动物培育白化新品种;利用芽突变培育无籽品种等。诱变育种概念:利用理化因素处理植物或微生物,产生突变,选育新品种特点:供试材料多,有用突变少,有盲目性,适于植物和微生物高等生物非同源染色体的自由组合非姐妹染色单体的交叉互换减数分裂时发生转化转导受体细胞直接吸收供体细胞的DNA例:肺炎双球菌的转化实验通过噬菌体介导,将供体细胞DNA片段带进受体细胞原核生物5.38基因重组自然的基因重组基因工程(重组DNA技术) 例:抗虫棉人工的基因重组5.39基因突变与基因重组的比较基 因 突 变

44、基 因 重 组发生后的结果形成新基因(等位基因或复等位基因)形成新的基因型发生的时期减数分裂或有丝分裂时的DNA复制时减数分裂的第一次分裂时本质原因碱基对的改变(替换、增添、缺失)非姐妹染色单体的交叉互换同源染色体的分离特 点低频性、偶然性、多向性、无规律高发性、必然性、多样性、有规律关 系基因突变为基因重组提供材料基因重组使突变的基因以多种形式传递5.40染色体结构变异缺失重复倒位易位图示abcdeabedebcaadebcbcbedcadebcadebcaxyzxyzcbdea效应人类的猫叫综合征(5号染色体部分缺失)果蝇的棒眼(小眼数目减少。X染色体某一区段重复)一般无效应,但是大段倒位

45、导致不育一般无效应,但杂合子易位常伴有不同程度的不育5.41染色体数目变异类别名称染色组构成事例个别染色体数目增减(非整倍体)单体2N1AA1(abcd)(abc)唐氏综合征(XO)双单体2N11AA1,AA1(abc-)(ab-d)缺体2N2(1)AA1,AA1(abc-)(abc-)三体2N1AA1(abcd)(abcd)(d)21三体综合征四体2N2(1)AA1, AA1(abcd)(abcd)(dd)双三体2N11AA1, AA1(abcd)(abcd)(cd)染色体数目成倍增减(整倍体)单倍体1或多个1个(abcd)或多个(abcd)蜜蜂的雄蜂二倍体2NAA(abcd)(abcd)人

46、 果蝇 豌豆多倍体同源三倍体3NAAA(abcd)(abcd)(abcd)香樵 三倍体西瓜同源四倍体4NAAAA 4个(abcd)蔓陀罗 异源四倍体4NAABB 2个(abcd)2个(opqr)棉花 烟草 油菜异源六倍体AAAABBBB6N 2个(abcd)AABBCC 2个(opqr)2个(wxyz)普通小麦异源八倍体8N4个(abcd)4个(wxyz)异源八倍体小黑麦说明:大写字母表示染色体组,小写字母表示染色体。这里假定每个染色体组含有4个染色体。5.42四倍体(AAaa)的自交分析AAaa显性显性AAaa亲本配子1AA4Aa1aa1AA1AAAA显4AAAa 显1Aaaa显4Aa4AA

47、Aa 显16Aaaa 显4Aaaa显1aa1Aaaa 显4Aaaa 显1aaaa 隐隐性显性351子代隐性显性171卵精子1AA2Aa2A1a2A2AAA显4Aaa显4AA显2Aa显1a1Aaa显2Aaa显2Aa显1aaa隐注:AA精子和Aa精不育或不能参与受精显性AAaAAa显性亲本子代5.43三体(AAa)的自交分析5.44染色体变异的几个概念的比较概念特点形成过程事例染色体组一个正常配子所含的染色体数叫一个染色体组,用N表示。不含同源染色体,含有一整套完整的基因减数分裂果蝇N=4单倍体体细胞中含有本物种配子染色体数的个体可能含一个或几个染色体组二倍体和奇数多倍体的单倍体高度不育偶数多倍体

48、的单倍体可育单性生殖(可自然形成和通过花药离休培养形成)雄蜂N=16单倍体水稻N=12(或2N=24)同源多倍体具有三个以上相同染色体组的个体茎秆粗壮,叶、果实和种子变大糖类、蛋白质含量多生长变慢,成熟推迟,育性降低由染色体加倍形成由已加倍的多倍体与原来的二倍体杂交形成四倍体西瓜4N=44三倍体西瓜3N=33异源多倍体两个或两个以上物种杂交后经染色体加倍后形成的个体远缘杂交具有两个物种的特性先种间杂交后染色体加倍(自然或人工)普通小麦6N=42小黑麦(8N=56)5.45普通小麦(异源六倍体)的自然形成途径一粒小麦AA(2N=14)斯氏山羊草或可能是拟斯卑尔脱山羊草BB(2N=14)二粒小麦A

49、ABB(4N=28)滔氏山羊草DD(2N=14)染色体加倍(不育)(3N=21)ABD普通小麦AABBDD(6N=42)染色体加倍AB(不育)(2N=14)5.46单倍体育种一般过程选择亲本杂交种植杂种一代加倍处理后再选择(或先选择后加倍处理)扩大和推广利用杂种一代的花粉获得单倍体植株花药离体培养培育图解利用AAbb和aaBB两个单优品种双优品种(AABB)AAbbaaBB(品种A)(品种B)AaBb(双优杂交种)种植ABAbaBab花粉F1单倍体ABAbaBab花药离休培养染色体加倍aaBBAABBAAbbaabb二倍纯合体杂交aaBBAABBAAbbaabb保留推广淘汰选择亲本推广例四倍体

50、西瓜(4N=44)三倍体西瓜(3N=33)加倍普通西瓜(2N=22)幼苗植株种子植株三倍体西瓜(3N=33)普通西瓜(2N=22)蕊花粉无籽西瓜(3N=33)果实秋水仙素第一年第二年刺激普通西瓜(2N=22)不加倍5.47多倍体育种5.48利用遗传学原理的育种总结育种类型原理方法优点缺点基因育种杂交育种基因的分离连续自交与选择实现优良组合丰富优良品种育种年限长不易发现优良性状基因的重组基因工程育种转基因定向、打破隔离可能有生态危机改造原来基因定向改造结果难料诱变育种基因突变诱变与选择提高突变率供试材料多染色体育 种单倍体育种染色体数目变异花药离体培养秋水仙素处理性状纯合快缩短育种年限需先杂交技

51、术复杂多倍体育种秋水仙素处理器官大,营养多发育迟缓结实率低细胞工程育种细胞融合细胞全能性细胞融合植物组织培养打破种间隔离创造新物种结果难料5.49人类的遗传病分类病列特点基因遗传病单基因遗传病显性遗传病并指 软骨发育不全 抗VD佝偻病(X) 连续遗传隐性遗传病白化 血友病(X) 先天性聋哑 苯丙酮尿症 进行性肌营养不良(X)隔代遗传近亲结婚发病率高多基因遗传病唇裂 无脑儿 原发性高血压 青少年型糖尿病 家庭性肥胖家庭聚集现象易受环境影响染色体遗传病结构异常缺失猫叫综合征(5号染色体部分缺失)后果严重(死胎 流产)数目异常常染色体病个别减少单体 缺体个别增多21三体 13三体性染色体病个别减少特

52、纳氏综合征(XO)性别异常不孕不育个别增多XXY XXX XXXY细胞质遗传病线粒体肌病母系遗传5.50人类遗传病的预防(优生)措施原理方法禁止近亲结婚减少隐性基因纯合的概率直系血亲和三代以内旁系血亲禁婚(法律约束)进行遗传咨询利用遗传学原理进行生育指导了解家庭病史 分析传递方式 推算发病风险 提出防治对策提倡适龄生育减少突变的发生避免低龄(40岁)生育实施产前诊断查找胎儿的遗传缺陷基因检测、染色体检查和其他孕期检查5.51自然选择学说与现代进化理论的比较自然选择学说现代进化理论主要内容过度繁殖:为自然选择提供更多材料,引起和加剧生存斗争。生存斗争:繁殖过剩导致生存危机。是自然选择的过程,是生

53、物进化的动力。遗传变异:变异普遍而不定向,好的变异可通过遗传积累和放大。适者生存:适者生存不适者淘汰,决定了进化的方向。种群是生物进化的单位:种群是生物存在的基本单位,是“不死”的,基因库在种群中传递和保存。生物进化的实质是种群基因频率的改变突变和基因重组产生进化的原材料自然选择决定进化的方向隔离导致物种形成核心观点自然选择过程是适者生存不适者被淘汰的过程变异是不定向的,自然选择是定向的自然选择过程是一个长期、缓慢和连续的过程生物进化是种群的进化。种群是进化的单位进化的实质是改变种群基因频率突变和基因重组、自然选择与隔离是生物进化的三个基本环节意义能科学地解释生物进化的原因能科学地解释生物的多

54、样性和适应性为现代生物进化理论奠定了理论基础科学地解释了自然选择的作用对象是种群不是个体从分子水平上去揭示生物进化的本质5.52达尔文进化理论的三个原则与群体遗传学变异的原则任何一个群体中的个体在形态、生理和行为上的差异遗传的原则后代与他们亲本的相似性多于无关个体的相似性选择的原则在特定的环境下,一些个体总比另一些个体有更强的生存力和繁殖力达尔文进化论三原则将达尔文的三个原则转变成精确的遗传学概念的是群体遗传学。群体遗传学是研究群体的遗传结构及其变化规律的遗传学的分支学科。它应用数学和统计学方法研究群体的基因频率和基因型频率,以及影响这些频率的选择效应和突变作用、迁移和遗传漂变作用与遗传结构的

55、关系,以此来探讨进化的机制。生物进化过程实质上是群体中基因频率的演变过程。因此群体遗传学是研究生物进化的理论基础。至于生物进化机制的研究当然应属于群体遗传学的研究范畴。群体遗传学基因频率某种基因在某个种群中出现的比例叫基因频率基因型频率群体中某特定基因型个体的数目占个体总数目的比率基因库概念:一个种群的全部个体所含的全部基因叫基因库特点:不仅不会因个体死亡而消失,反而在代代相传中保持和发展种群概念:生活在同一地点的同种生物的一群个体,是生存和繁殖的基本单位特点:彼此之间可以交配产生可育后代,通过繁殖传递基因给后代5.53种群、基因库、基因频率、基因型频率5.54常染色体上基因频率和基因型频率的

56、计算与关系设 有N个个体的群体中有A和a一对等位基因在常染色体上遗传,其可能的基因型有三种:AA、Aa、aa,如果群体有 n1AA+n2Aa+n3aa个个体,则n1+n2+n3=N。于是基因频率=配子频率Aa基因型频率AAAaaa基因频率与基因型频率的关系 而D+H+R=1,由于AA个体有两个A基因,Aa个体只有1个A基因;aa个体有两个a基因,Aa个体只有1个a基因。因而而p+q=1。公式、表示基因频率与基因型频率间的关系。 例 中国汉族人中PTC(笨硫脲)偿味能力分布如下表(T对t不完全显性)表现型基因型人数基因型频率基因Tt完全偿味者偿味杂合体(弱)味盲TTTttt(n1)490(n2)

57、420(n3)90(D)0.49(H)0.42(R)0.09980420420180合计100011400600则 T基因的频率为 或 t基因的频率为 或 个体数量足够大交配是随机的没有突变、迁移和遗传漂变没有新基因加入没有自然选择5.55遗传平衡定律如果一个群体满足以下条件:那么这个群体中的各等位基因频率和基因型频率在一代一代的遗传中保持平衡(不变)。这就是遗传平衡定律。例 如果某群体中最初的基因型频率是YY(D)=0.10,Yy(H)=0.20,yy(R)=0.70。则这个群体的配子频率(配子频率)是 卵细胞精子0.20Y(p)0.80y(q)0.20Y(p)0.04YY0.16Yy0.8

58、0y(q)0.16Yy0.64yy 于是,下一代的基因型频率是 即子代的基因型频率是 YY=p2=0.04Yy= 2pq=20.16=0.32 yy= q2=0.64由此可知,该代的基因频率是 与上代的基因频率达到平衡。可以计算,下代的基因型频率与上代相等,即 YY=p2=0.04 Yy= 2pq=20.16=0.32 yy= q2=0.64至此,基因型频率也达到平衡。综上所述,对于一个大的群体中的等位基因A和a,当A基因频率为p,a基因频率为q时,有 这个群体的基因型频率是 于是有 5.56性染色体上基因频率和基因型频率的计算如果一对等位基因A、a位于X染色体上,在随机交配的条件下,达到平衡

59、时,有雄性个体雌性个体XAXaXAXA XAXa XaXapqq2P22pq基因型基因型频率p+q=1p2+2pq+q2=1基因频率pqpq基因型频率特点(式中X表示雄性,XX表示雌性)基因频率雌性个体的基因频率雄性个体的基因频率即雌性个体基因型频率(与常染色体的基因型频率算法相同)XAXAP2XAXa2PqXaXaq2雄性个体基因型频率基因频率XAYPXaYq基因型频率分别计算伴X基因有2/3存在于雌性个体,1/3存在于雄性个体中(雌性为XX,雄性为XY)伴X隐性遗传病的男患者女患者qq2,当男性发病率为1时,女性发病率为q (男多于女)伴X显性遗传病的男患者女患者p(p2+2pq) 1(1

60、+q) (女多于男) (当男性发病率为p=1时,女性发病率为(p+2q) (1q+2q) (1+q))几个特点由此可知,例 在人群中调查发现男性色盲患者是7%,求(1)色盲基因(Xa)和它的等位基因(XA)的频率。(2)女性的基因型频率。(3)下一代的基因频率。解:(1)求基因频率:Xa基因的频率:q男性个体的基因型频率男性个体的表现型频率女性个体的Xa基因频率7%0.07。XA基因的频率:p1q10.070.93 (2)求女性的基因型频率: XAXAp20.930.930.8649XAXa2pq20.930.070.1302Xa Xaq20.070.070.0049 (3)求下一代的基因频率

61、下一代的基因频率上一代的女性中基因的频率,即突变基因重组基因突变染色体变异产生进化的原材料可遗传的变异5.57突变和基因重组产生进化的原材料直接原因1、产生突变的绝对个体数大:虽然每个基因的突变率低,但基因数量多种群数量大2、有利与有害突变不是绝对的,往往取决于生存环境3、基因重组形成不同基因型,使群体中出现大量可遗传的变异变异产生是不定向的,突变和基因重组只是产生进化的原材料,不能决定进化的方向根本原因选择种群中的极端类型,淘汰多数个体的过程。最常见。例:桦尽蠖的进化定向性选择5.58选择的类型选择种群中的中间类型,淘汰极端类型。对抗基因突变和遗传漂变。例:34kg左右的新生儿存活率高,轻于

62、和重于此值的存活率低。稳定性选择自然选择选择种群中的极端类型,淘汰中间类型。较少见。例:美州白足鼠长尾(LL)和短尾(ll)被选择,中尾(Ll)被淘汰中断性选择不随机交配。例:果蝇中有红眼雄果蝇时雌蝇不与白眼雄果蝇交配按照人的意志保留某性状的个体,淘汰不需要的个体。人工选择性选择自然选择改变了生物种群的基因频率,从而决定了生物进化的方向5.59自然选择决定生物进化的方向5.60改变生物种群基因频率的因素突变、选择(包括自然选择、性选择和人工选择)、遗传漂变、迁移因 素自然选择主要因素5.61突变与选择的关系突变是不定向的突变为选择提供原材料选择是定向的没有突变也可进行选择5.62隔离的类型由于

63、地理上了障碍导致两个种群不能交配的现象。例:东北虎与华南虎地理隔离两个种群间的个体不能自由交配(交配前隔离)或交配后不能产生可育后代(交配后隔离)的现象。生殖隔离特点:发生在同一物种之内。导致小种群和物种的不同分布特点:发生在不同物种之间。有或没有生殖隔离。5.62物种形成的方式地理隔离生殖隔离物种形成隔离导致物种形成多倍体导致物种形成例1:同源多倍体四倍体西瓜例2:异源多倍体六倍体小麦5.63现代生物进化理论的核心生物进化的一个基本观点物种形成的三个基本环节种群是生物进化的基本单位,生物进化的实质在于种群基因频率的改变。1、突变和基因重组2、自然选择3、隔离产生进化的原材料使基因频率定向改变并决定生物进化方向导致新物种的形成,是新物种形成的必要条件.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3