ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:134KB ,
资源ID:782651      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-782651-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021秋八年级数学上册 第十一章 三角形11.3 多边形及其内角和 2多边形的内角和学案(新版)新人教版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021秋八年级数学上册 第十一章 三角形11.3 多边形及其内角和 2多边形的内角和学案(新版)新人教版.doc

1、多边形的内角和(一)思考三角形的内角和等于180。正方形、长方形的内角和都等于360,其他四边形的内角和等于多少?(二)探究任意画一个四边形,量出它的4个内角,计算它们的和。 再画几个四边形,量一量,算一算。你能得出什么结论?能否利用三角形内角和等于180得出这个结论?如图7.38,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形。这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360。从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图7.39,请填空:从五边形的一个顶点出发,可以引_条对角线,它们将五边形分为_个三角形,五边形的内角和等于180_。从六边形

2、的一个顶点出发,可以引_条对角线,它们将六边形分为_个三角形,六边形的内角和等于180_。通过以上问题,你能发现多边形的内角和与边数的关系吗?一般地,怎样求n边形的内角和呢?请填空:从n边形的一个顶点出发,可以引_条对角线,它们将n边形分为_个三角形,n边形的内角和等于180_。总结:过n边形的一个顶点可以做(n3)条对角线,将多边形分成(n2)个三角形,每个三角形内角和180。所以n边形内角和(n2)180。把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗? 方法2:如图:733过n边形内任意一点与n边形各顶点连接,可得n个三角形,其内角和n180。再减去以O

3、为顶点的周角。即得n边形内角和n180360。得出了多边形内角和公式:n边形内角和等于(n2)180。(三)例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?解:如图7.310,四边形ABCD中,AC180。因为ABCD(42)180360,所以BD360(AC)=360180=180。这就是说,如果四边形的一组对角互补,那么另一组对角也互补。例2如图7.311,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少?分析:考虑以下问题:(1)任何一个外角同与它相邻的内角有什么关系?(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?(

4、3)上述总和与六边形的内角和、外角和有什么关系?联系这些问题,考虑外角和的求法。解:六边形的任何一个外角加上与它相邻的内角,都等于180。6个外角连同它们各自相邻的内角,共有12个角。这些角的总和等于6180。这个总和就是六边形的外角和加上内角和。所以外角和等于总和减去内角和,即外角和等于6180(62)1802180360。(四)探究如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗?思路:(用计算的方法)设n边形的每一个内角为1,2,3,n,其相邻的外角分别为1801,1802,1803,180n。外角和为(1801)(1802)(180n)=n180(123n)=n180(n2)180=360注意:以上各推导方法体现将多边形问题转化为三角形问题来解决的基本思想。由上面的探究可以得到:多边形的外角和等于360。你也可以像以下这样理解为什么多边形的外角和等于360。如图7.312,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向。在行程中所转的各个角的和,就是多边形的外角和。由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360。(五)练习一起学习课本89页的练习(六)小结引导学生总结本节所学的知识点

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3