1、含30o角的直角三角形的性质【学习目标】:1. 掌握含30o角的直角三角形的性质,并能灵活运用这一性质解决实际问题。2. 培养学生的推理能力和数学语言表达能力3. 感受数学的严谨性,激发学生的好奇心和求知欲。学习重点:含30角的直角三角形的性质定理的证明与运用学习难点:含30角的直角三角形的性质定理的证明。一. 导学1. 复习回顾:等边三角形的性质与判定2. 问题:用两个全等的含30角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由3. 由2你能想到,在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?你能用不同于课本上的方法证明你的结论吗?4. 由3,我们得
2、到下面的性质定理:CBA在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。5. 填空:如右图,在ABC中,C=90o,A=30o BC= ( ) 二. 合作探究:1. 如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,A=30,立柱BC、DE要多长?2. 等腰三角形的底角为15,腰长为2a,则腰上的高为 。3. 已知:如图,ABC中,ACB=90,CD是高,A=30 求证:BD=ABPFEDCBA4. 如图,ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BFAE于点F求证:BP=2PF 拓展探索题:PDCBAEF如图:等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P(1). 运动几秒后,ADE为直角三角形?(2).求证:在运动过程中,点P始终为线段DE的中点。 (提示:过点D作AF的平行线)2