ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:2.13MB ,
资源ID:775581      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-775581-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012届高考数学(文)《优化方案》一轮总复习课件:第8章§8.4(大纲版).ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012届高考数学(文)《优化方案》一轮总复习课件:第8章§8.4(大纲版).ppt

1、山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 8.4 直线与圆锥曲线的位置关系山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 考点探究挑战高考 考向瞭望把脉高考 8.4 直线与圆锥曲线的位置关系双基研习面对高考 山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回双基研习面对高考 基础梳理1直线与圆锥曲线的位置关系:_、_、_三种情况一般通过它们的方程来研究:设直线 l:AxByC0,二次曲线 C:f(

2、x,y)0.联立方程组AxByC0fx,y0,消去 y(或 x)得到一个关于 x(或 y)的方程 ax2bxc0(或ay2byc0)相交相切相离山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回(1)当a0时,0,则方程有两个不同的解,直线与圆锥曲线有两个公共点,直线与圆锥曲线_;0,则方程有两个相同的解,直线与圆锥曲线有一个公共点,直线与圆锥曲线_;0)的经过焦点的弦 AB 的两端点坐标分别为 A(x1,y1),B(x2,y2),则y1y2x1x2的值一定等于()A4 B4Cp2Dp2山东水浒书业有限公司 优化方案系列丛书第8

3、章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回答案:D3以椭圆x216y24 1 内的点 M(1,1)为中点的弦所在直线的方程是()A4xy30 Bx4y30C4xy50 Dx4y50山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回4已知抛物线x212y的切线l垂直于直线xy0,则l的方程为_答案:yx35过双曲线 x2y22 1 的右焦点作直线 l,交双曲线于 A、B 两点,若|AB|4,则这样的直线的条数为_答案:3山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向

4、瞭望把脉高考 考点探究挑战高考 返回考点探究挑战高考 考点突破 直线与圆锥曲线的位置关系 判断它们的位置关系或者利用它们的位置关系,方程的思想与数形结合思想要结合起来已知双曲线C:2x2y22与点P(1,2),求过点P(1,2)的直线l的斜率的取值范围,使l与C分别有一个交点,两个交点,没有交点例1山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【思路分析】将直线方程与双曲线方程联立,组成方程组,消去y,利用一元二次方程根的判别式求解【解】(1)当 l 垂直 x 轴时,此时直线与双曲线相切(2)当 l 不与 x 轴垂直时,设直

5、线 l 的方程为 y2k(x1)代入双曲线 C 的方程中,并整理得(2k2)x22(k22k)xk24k60,(*)当 k22,即 k 2时,(*)为一次方程,显然只有一解;当 k22 时,4(k22k)24(2k2)(k24k6)4832k.山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回令 0,可解得 k32;令 0,即 4832k0,此时 k32;令 0,即 4832k32.当 k 2或 k32或 k 不存在时,l 与 C 只有一个公共点;当 k 2或 2k 2或 2k32时,l 与 C 没有交点山东水浒书业有限公司 优

6、化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【领悟归纳】当 k32或 k 不存在时,l 是切线,当k 2时,l 是平行渐近线的直线山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题,其解法有代点相减法,设而不求法,参数法,待定系数法及中心对称变换法等,最常用的是代点相减法和设而不求的方法直线与圆锥曲线相交时的中点弦 山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研

7、习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【思路分析】若抛物线 y2x2 上的两点 A(x1,y1),B(x2,y2)关于直线 l:yxm 对称,且 x1x212,求实数m 的值例2山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【解】法一:如图所示,A、B 两点关于直线 l 对称,ABl,且 AB 中点 M(x0,y0)在直线 l 上可设 lAB:yxn,由yxn,y2x2,得 2x2xn0,x1x212,x1x2n2.由 x1x212,得 n1.山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面

8、对高考 考向瞭望把脉高考 考点探究挑战高考 返回又 x0 x1x2214,y0 x0n14154,即点 M 为(14,54),由点 M 在直线 l 上,得5414m,m32.法二:A、B 两点在抛物线 y2x2 上,y12x21,y22x22,y1y22(x1x2)(x1x2)设 AB 中点 M(x0,y0),则 x1x22x0 代入可得,山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回kABy1y2x1x24x0.又 ABl,kAB1,从而 x014.又点 M 在 l 上,y0 x0mm14,即 M(14,m14),山东水浒

9、书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回AB 的方程是 y(m14)(x14),即 yxm12,代入 y2x2,得 2x2x(m12)0,x1x2m12212,m32.山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【思维总结】设参数,再消参数,可简化运算互动探究1 在本例中,设AB与l的交点为M,求过M的弦的中点Q的轨迹方程解:由以上解答可知,当 m32时,M(14,54),过 M与抛物线 y2x2 相交的弦所在直线 l斜率一定存在设 l与抛物线的交点为 C

10、、D.C(x3,y3),D(x4,y4),CD 的中点 Q 为(x,y)且 x3x4.y32x23y42x24山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回得 y3y42(x3x4)(x3x4)又x3x42x,y3y44x(x3x4),kCDy3y4x3x44x.又kCDkQMy54x144y54x1,4y54x14x,y4x2x54就是 Q 的轨迹方程山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回直线与圆锥曲线相交时的弦长问题 求圆锥曲线的弦长问题的一般

11、思路是:将直线方程代入圆锥曲线方程,消去 y(或 x)后,得到关于 x(或 y)的一元二次方程 ax2bxc0(或 ay2byc0),再由弦长公式|AB|1k2|x1x2|1 1k2|y1y2|,求出其弦长在求|x1x2|时,可直接利用公式|x1x2|b24ac|a|求得山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回已知ABC的顶点A,B在椭圆x23y24上,C在直线l:yx2上,且ABl.当ABC90且斜边AC的长最大时,求AB所在直线的方程【思路分析】用弦长表示|AB|,用点到直线的距离公式表示|BC|,求|AC|2.例

12、3山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【解】设 AB 所在直线的方程为 yxm.由 x23y24yxm,得 4x26mx3m240.因为 A,B 在椭圆上,所以 12m2640,解得4 33 m4 33.设 A,B 两点的坐标分别为(x1,y1),(x2,y2)山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回则 x1x23m2,x1x23m244,所以|AB|2|x1x2|326m22.又因为 BC 的长等于点(0,m)到直线 l 的距离,即|BC

13、|2m|2.所以|AC|2|AB|2|BC|2m22m10(m1)211(4 33 m0)过点 A(1,2)(1)求抛物线 C 的方程,并求其准线方程(2)是否存在平行于 OA(O 为坐标原点)的直线 l,使得直线 l 与抛物线 C 有公共点,且直线 OA 与 l 的距离等于 55?若存在,求出直线 l 的方程;若不存在,说明理由例山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【解】(1)将(1,2)代入y22px,得(2)22p1,所以p2.2分故所求的抛物线C的方程为y24x,其准线方程为x1.4分山东水浒书业有限公司

14、优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回(2)假设存在符合题意的直线 l,其方程为 y2xt,由 y2xt,y24x,得 y22y2t0.6 分因为直线 l 与抛物线 C 有公共点,所以 48t0,解得 t12.8 分山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回另一方面,由直线 OA 与 l 的距离 d 55 可得|t|5 15,解得 t1.10 分因为112,),112,),所以符合题意的直线 l 存在,其方程为 2xy10.12 分山东水浒书业有限公司 优化方案系列

15、丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回【名师点评】本题主要考查了抛物线的方程求法,直线与抛物线的关系的判定以及推理运算能力,函数方程思想,化归转化思想,分类与整合思想,难度适中第(1)问较简单,增加了考生的信心第(2)问是探索性问题,理清直线存在的三个条件:平行 OA;与抛物线有公共点;OA 与 l 距离为 55,从而验证存在与否问题考生的失误在于对这三个条件不能正确区分与使用山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回名师预测已知椭圆 C:x2a2y2b21(ab0)的离心率

16、e 22,原点到过点 A(0,b)和 B(a,0)的直线的距离为 63.(1)求椭圆 C 的方程;(2)已知定点 M(2,0),若过点 M 的直线 l(斜率不等于零)与椭圆 C 交于不同的两点 E、F(E 在 M 与 F 之间),记 SOMESOMF,求 的取值范围山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回解:(1)由题知直线 AB 的方程为xa yb1,即 bxayab0.依题意,得 ca 22c2a2b

17、2aba2b2 63,解得 a 2,b椭圆 C 的方程为x22 y21.山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回(2)由题意知直线 l 的斜率存在且不为零,故可设 l 的方程为 yk(x2),将 l 的方程代入椭圆方程x22 y21,整理得(2k21)x28k2x8k220.由 0,得(8k2)24(2k21)(8k22)0,即 2k210,0k2x2,且 x1x2 8k22k21x1x28k222k21,(*)山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回由 SOMESOMF,得|ME|MF|,由此可得ME MF,则 x12x22,且 01.由(*)知,(x12)(x22)42k21,山东水浒书业有限公司 优化方案系列丛书第8章 圆锥曲线方程双基研习面对高考 考向瞭望把脉高考 考点探究挑战高考 返回(x12)(x22)x1x22(x1x2)422k21,12x12x22x1x242 2k218,即 k241212,0k212,04121212,又01,解得 32 21.即 的取值范围是(32 2,1)本部分内容讲解结束 点此进入课件目录按ESC键退出全屏播放谢谢使用

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3