ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:2.78MB ,
资源ID:774874      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-774874-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(5.1.1 相交线(教学设计)-【上好课】七年级数学下册同步备课系列(人教版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

5.1.1 相交线(教学设计)-【上好课】七年级数学下册同步备课系列(人教版).docx

1、5.1.1 相交线 教学设计一、内容和内容解析1.内容本节课是人教版义务教育教科书数学七年级下册(以下统称“教材”)第五章“相交线与平行线”5.1.1相交线,内容包括:邻补角与对顶角的概念及性质.2.内容解析本节课是在学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。基于以上分析,确定本节课的教学重点为:掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.

2、二、目标和目标解析1.目标(1)理解两条直线相交的特征及邻补角与对顶角的概念.(2)掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.2.目标解析理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。掌握“对顶角相等的性质”,理解对顶角相等的说理过程,在数学活动中培养学生的观察、转化、说理能力和语言规范表达能力。通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。三、教学问题诊断分析七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针

3、对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。基于以上学情分析,掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计算及解决简单的实际问题.四、教学过程设计情境引入你能在身边找出一些相交线的实例吗?自学导航思考:作过程,你能发现它的角有什么变化?如果把剪刀的构造看做两条相交的直线,你们想想它是一种怎样的几何结构?如果两条直线有一个公共点,就说这两条直线相交;公共点叫做这两条直线的交点.上图的几何描述为:直线AB、CD相交于点O.合作探究探究:任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种

4、位置关系将它们分类. 形如1与2有一条公共边OC,它们的另一边互为反向延长线(1和2互补),具有这种关系的两个角,互为邻补角. 图中还有哪些角也是邻补角呢? 形如1与3有一个公共顶点O,并且1的两边分别是3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角. 图中还有哪些角也是对顶角呢? 1 与3在数量上又有什么关系呢? 对顶角相等 1与2互补,3与2互补 (邻补角的定义) 1=3 (同角的补角相等) (注:“”表示“因为”,“”表示“所以”.)考点解析考点1:邻补角的定义及性质例1. 下列图形中,1与2互为邻补角的是( )【迁移应用】1.下列说法中正确的是( )A.一个角的邻补角只有B

5、.一个角的邻补角必定大于这个角C.相等的两个角不可能是邻补角D.一个角的邻补角可能是锐角、钝角或直角2.如图,直线a,b相交.(1)1+2=_;3+4=_.(2)4的邻补角是_.(3)图中的邻补角共有_对.3. 已知B与A 互为邻补角,且B=2A,那么A=_.考点2:对顶角的定义及性质例2. 下列图形中,1和2互为对顶角的是( )【迁移应用】1.如图,直线 AB,CD 相交于点O,则1的对顶角是( )A.2 B.3 C.4 D.3和42.如图,直线AB,CD 相交于点O,若AOD 减小30则BOC( )A.增大30 B.增大150 C.不变 D.减小303.如图是一个对顶角量角器,用它测量角的

6、原理是_.4.如图是一把剪刀,若AOB+COD=82,则BOD=_.5.如图,直线AB,CD相交于点O,AOC=(2x-10),BOD=(x+25),则x=_.考点3:运用邻补角、对顶角的性质进行角度的计算例3.【方程思想】如图,直线AB,CD相交于点O,AOC = 80,OE把BOD分成两部分,且BOE:DOE=2:3,求AOE的度数.解:因为AOC=80,AOC=BOD(对顶角相等),所以BOD=80.由BOE:DOE=23,设BOE=2x,DOE=3x .因为BOD=BOE+DOE,所以2x+3x=80,解得x=16.【迁移应用】1.如图,直线AB与CD 相交于点O,OA 平分COE,若

7、DOE=70,则BOD 的度数是( )A.75 B.65 C.55 D.1052.如图,三条直线相交于一点,则 1+2+ 3 =_.3.如图直线AB,CD相交于点O,OA 平分EOC.若EOA:EOD=1:3,求BOD的度数.解:因为EOA: EOD=1:3,所以设EOA=x,EOD= 3x因为OA平分EOC所以COA=EOA=x,EOC=2x因为EOC+EOD=180(邻补角的定义).所以 2x+3x=180,解得 x=36.所COA=36所以BOD=COA=36(对顶角相等)考点4:利用邻补角与对顶角的性质解决实际问题例4.【一题多解】如图是一块弯折的屏风,假设其背面不可到达,要测量其在地

8、面上形成的AOB的度数,你有什么方法?解:方法 1:如图,延长 AO 至点 C,测量出 BOC 的度数.因为邻补角互补,所以 AOB+ BOC = 180,所以 AOB =180- BOC,即可得到 AOB 的度数.方法2:如图,延长AO至点C,延长BO至点D,测量出COD的度数.因为对顶角相等,所以AOB=COD,即可得到AOB的度数. 【迁移应用】【跨学科】将一根玻璃棒放入盛有水的烧杯中,一头露出水面,一头浸入水中,我们可以发现浸入水中的部分“变弯了”.它真的变弯了吗? 其实没有,这只是光的折射现象,即光从空气射入水中,光线的传播方向发生改变如图,一束光AO射入水中,在水中的传播路径为OB

9、,1与2是对顶角吗?如果不是对顶角,你能比较它们的大小吗?解:1与2不是对顶角.如图,延长AO,可得21.考点5:邻补角在折叠问题中的应用例5.【整体思想】如图,将五边形纸片ABCDE折叠,折痕为AF,点D,E分别落在点D,E处.已知AFC=76,求CFD的度数.解:因为AFC+AFD=180(邻补角的定义),AFC=76,所以AFD=180-AFC=104.由折叠可知AFD=AFD=104,所以CFD=AFD- AFC =104-76=28.【迁移应用】1. 如图,把一张长方形的纸片按如图所示的方式折叠后,B,D两点分别落在点B,D处.若AOB=80,则BOG的度数为_.2.如图,将长方形纸

10、片折叠,使点A落在点A处,BC为折痕,BD为ABE的平分线,则CBD的度数为_.考点6:相交线中的探究题例6. (1)观察图,图中共有_对对顶角,_对邻补角;(2)观察图,图中共有_对对顶角,_对邻补角;(3)观察图,图中共有_对对顶角,_对邻补角;(4)若有n条直线相交于一点,则可形成_对对顶角,_对邻补角.解:(1)图中,共有对顶角12=2(对),邻补角212=4(对);(2)图中,共有对顶角23=6(对),邻补角223=12(对) ;(3)图中,共有对顶角34=12(对),邻补角234=24(对);(4)由特殊到一般,可找出规律:若有n条直线相交于一点,则可形成n ( n-1 )对对顶角,2n (n-1)对邻补角.【迁移应用】观察下列图形,阅读下面的相关文字并回答后面的问题:(1)5条直线相交,最多有几个交点?(2)6条直线相交,最多有几个交点?(3)猜想:n条直线相交,最多有几个交点?解:(1)5条直线相交,交点最多有5(5-1)2=10(个).(2)6 条直线相交,交点最多有6(6-1)2=15(个).(3) n条直线相交,最多有n(n-1)2个交点.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1