1、课时过关检测(十九) 极值点偏移问题1(2022大庆二模)设函数f(x)axln xb(a,bR)若函数f(x)有两个零点x1,x2,求证:x1x222ax1x2证明:不妨设x12ax1x2,即证x1x222x1x2,只需证x1x2x1x2,只需证2ln ,即证2ln 设t,则t1,只需证t2ln t,设h(t)t2ln t(t1),只需证h(t)0因为h(t)10,所以h(t)在(1,)上单调递增,所以h(t)h(1)0,即t2ln t,所以x1x222ax1x22已知函数f(x)xln xx2(a1)x,其导函数f(x)的最大值为0(1)求实数a的值;(2)若f(x1)f(x2)1(x1x
2、2),证明:x1x22解:(1)由题意知,函数f(x)的定义域为(0,),其导函数f(x)ln xa(x1)记h(x)f(x),则h(x)(x0)当a0时,h(x)0恒成立,所以h(x)在(0,)上单调递增,且h(1)0,所以x(1,),有h(x)f(x)0,不合题意;当a0时,若x,则h(x)0,若x,则h(x)0),则g(a)1当0a1时,g(a)1时,g(a)0,所以g(a)在(0,1)上单调递减,在(1,)上单调递增所以g(a)g(1)0,故a1(2)当a1时,f(x)xln xx2,则f(x)1ln xx由题意知f(x)1ln xx0恒成立,所以f(x)xln xx2在(0,)上单调
3、递减,易知f(1),f(x1)f(x2)12f(1),不妨设0x1x2,则0x112,只需证x22x1,因为f(x)在(0,)上单调递减,故只需证f(x2)f(2x1)又f(x1)f(x2)1,故只需证1f(x1)1令F(x)f(x)f(2x),x(0,1),且F(1)1所以欲证f(2x1)f(x1)1,只需证F(x)F(1),由F(x)f(x)f(2x)1ln xx1ln(2x)2x,整理得F(x)ln xln(2x)2(1x),则F(x)0(F(x)为F(x)的导数),所以F(x)ln xln(2x)2(1x)在区间(0,1)上单调递增,所以x(0,1),F(x)ln xln(2x)2(1
4、x)F(1),故x1x223已知函数f(x)aexln x1(aR)(1)当ae时,讨论函数f(x)的单调性;(2)若函数f(x)恰有两个极值点x1,x2(x10恒成立,f(x)在(0,)上单调递增;当0ae时,令f(x)0,即exax0,设g(x)exax(x0,),即g(x)exa,当0xln a时,g(x)ln a时,g(x)0,g(x)单调递增,g(x)g(ln a)eln aaln aa(1ln a)0,f(x)0,f(x)在(0,)上单调递增综上,当ae时,f(x)在(0,)上单调递增(2)依题意,f(x1)f(x2)0,则两式相除得,ex2x1,设t,则t1,x2tx1,e(t1
5、)x1t,x1,x2,x1x2,设h(t)(t1),则h(t),设(t)t2ln t(t1),则(t)10,(t)在(1,)上单调递增,则(t)(1)0,h(t)0,则h(t)在(1,)上单调递增,又x1x22ln 3,即h(t)2ln 3,而h(3)2ln 3,t(1,3,即的最大值为34已知函数f(x)exax有两个零点x1,x2(x1x2)(1)求实数a的取值范围;(2)证明:x2x10,所以f(x)在R上单调递增,故f(x)至多有一个零点,不符合题意;当a0时,令f(x)0,得x0,得xln a,故f(x)在(,ln a)上单调递减,在(ln a,)上单调递增,所以f(x)minf(ln a)aaln aa(1ln a)()若0e,则ln a1,f(x)mina(1ln a)aeln a0,f(2ln a)a22aln aa(a2ln a)0,又因为f(0)10,0ln a0,两式相除得etex2x1,变形得x1,欲证x2x12,即证t2,即证0),h(t)0,故h(t)在(0,)上单调递减,从而h(t)h(0)2,即2,所以x2x12得证