1、1.2 直角三角形第1课时 直角三角形的性质与判定学习目标:1、进一步掌握推理证明的方法,发展演绎推理能力;2、了解勾股定理及其逆定理的证明方法;3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。学习过程:一、 前置准备 角1、直角三角形的两个锐角 ;2、有两个角互余的三角形是 . 边1、说出你知道的勾股数2、勾股定理的内容是:_;它的条件是:_;结论是:_。二、自主学习:将勾股定理的条件和结论分别变成结论和条件,其内容是:下面试着将上述命题证明:已知在ABC中,AB2+AC2=BC2求证:ABC是直角三角形。得出定理:如果三角形两边的_等于_,那么这个三
2、角形是直角三角形。三、合作交流:1、观察勾股定理及上述定理,它们的条件和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系(1)如果两个角是对顶角,那么它们相等。如果两个角相等,那么它们 是对顶角。(2)如果小明患了肺炎,那么他一定会发烧。 如果小明发烧,那么他一定患了肺炎。(3)三角形中相等的边所对的角相等。 三角形中相等的角所对的边相等。像上述每组命题我们称为互逆命题,即一个命的条件和结论分别是另一个命题的_和_。2、阅读课本P16“想一想”,回答下列问题:一个命题是真命题,那么它的逆命题也一定是真命题吗? 什么是互逆定理?是否任何定理都有逆定理? 思考我们学过哪些互逆定理?四、
3、归纳总结:1、勾股定理和逆定理的内容分别是什么? 2、什么是互逆定理,什么是互逆命题?五、当堂训练:1、判断A:每个命题都有逆命题,每个定理也都有逆定理。( )B:命题正确时其逆命题也正确。( )C:直角三角形两边分别是3,4,则第三边为5。( )2、下列长度的三条线段能构成直角三角形的是( )8、15、17 4、5、6、 7.5、4、8.5 24、25、7 5、8、10 A: B: C: D:课下训练:1、以下命题的逆命题属于假命题的是( )A:两底角相等的两个三角形是等腰三角形。B:全等三角形的对应角相等。C:两直线平行,内对角相等。D:直角三角形两锐角互等。2、命题:等腰三角形两腰上的高
4、相等的逆命题是 。3、若一个直角两直角边之比为3:4,斜边长20CM,则两直角边为( , )4、已知直角三角形两直角边长分别为6和8,则斜边长为_,斜边上的高为_。5、写出下列命题的逆命题,并判断每对命题的真假:A:五边形是多边形。B:两直线平行,同位角相等。:C:如果两个角是对顶角,那么它们相等。D:如果AB=0,那么A=0,B=0。6、公园中景点A、B间相距50m,景点A、C间相距40m,景点B、C间相距30m,由这三个景点构成的三角形一定是直角三角形吗?为什么?7、台风过后,某小学旗杆在B处断裂,旗杆顶A落在离旗杆底部C点8m处,已知旗杆原长16m,则旗杆在距底部几米处断裂。8、小明将长2.5m的梯子斜靠在竖直的墙上,这时梯子底端B到墙根C的距离是0.7m,如果梯子的顶端垂直下滑0.4m,那么梯子的底端B将向外移动多少米。中考真题:用四个全等的直角三角形拼成了一个如图所示的图形,其中a表示较短,直角三角形,b表示较长的直角边,c表示斜边,你能用这个图形证明勾股定理吗?