1、 高一数学试题答案19解:(1)此函数的定义域为(,0)(0,+)f (x)f (x)函数f (x)为奇函数4分(2)函数f (x)为(,0)(0,+)上的奇函数 其图象关于原点对称8分(3)函数f (x)x在(3,+)上是增函数 证明:设x1、x2(3,+),且x1x2, 则f (x1)f (x2)x1x2(x1x2)(x1x2)(1)3x1x2x1x20,x1x29,10f (x1)f (x2)0f (x)x在(3,+)上是增函数即函数函数f (x)在(3,+)上是增函数12分20(1)证明:设x1x20,则x1x20f (x)是偶函数而且在(0,)上是减函数f (x1)f (x1),f
2、(x2)f (x2) f (x1)f (x2)f (x1)f (x2)f (x)在(,0)上是增函数6分(2)解: 当x0时,x0,所以f (x) (x)2(x)x2xf (x)是定义在R上的奇函数f (x)f (x)f (x)x2x又f (0)0,f (x)4分图象如图所示 6分21(1)因为f (x)是奇函数,所以f (0)b0, 又f (), 由b0,得:a1, 所以函数f (x)的解析式:f (x) 4分 (2)函数f (x)的定义域为:(1,1), 在(1,1)上,任取x1,x2,1x1x21,则: f (x1)f (x2), 因为1x1x21,则:x1x20, 1x1x20,(1x
3、)0,(1x)0, 所以f (x1)f (x2)0, 根据函数单调性的定义,1x1x21,f (x1)f (x2), 所以函数f (x) 在(1,1)上是增函数。 8分 (3)f (t1)f (t)0, f (t1)f (t)f (t), (f(x)是奇函数) 因为函数f (x) 在(1,1)上是增函数,所以 t1t,且1t11,1t1, 即t,且0t2,1t1, 所以 0t 12分22 (1);4分(2)因为的对称轴是x1所以,最大值,最小值 8分(3)当m1时,f (x)在m,n单调递减,且有n2n2m,m2m2n,无解9分当m1n时,2n,不合题意,舍去10分当m1时,有m2m2m,n2n2n,解得m2,n0.综上,存在m2,n0满足题设条件12分