1、函数的奇偶性与周期性一、选择题1下列函数中,为偶函数的是() Ay(x1)2By2xCy|sin x|Dylg(x1)lg(x1)C对于A,函数图像关于x1对称,故排除A对于B,f (x)2xf (x),函数不是偶函数对于C,f (x)|sin(x)|sin x|sin x|f (x),因此函数是偶函数对于D,由得x1,函数的定义域为(1,),定义域不关于原点对称,因此函数不是偶函数,故选C2函数f (x)的图像()A关于x轴对称B关于y轴对称C关于坐标原点对称D关于直线yx对称B因为f (x)3x3x,易知f (x)为偶函数,所以函数f (x)的图像关于y轴对称3设f (x)是定义在R上周期
2、为2的奇函数当0x1时,f (x)x2x,则f ()ABCDC由题意知f f f f ,故选C4如果奇函数f (x)在区间7,3上是减函数且最大值为5,那么函数f (x)在区间3,7上是()A增函数且最小值为5B增函数且最大值为5C减函数且最小值为5D减函数且最大值为5C由题意知,函数f (x)在区间3,7上是减函数且f (7)为最小值,又f (7)5,则f (7)f (7)5,故选C5(2021全国卷乙)设函数f (x),则下列函数中为奇函数的是()Af (x1)1Bf (x1)1Cf (x1)1Df (x1)1B法一:因为f (x),所以f (x1),f (x1)对于A,F (x)f (x
3、1)11,定义域关于原点对称,但不满足F (x)F (x);对于B,G(x)f (x1)11,定义域关于原点对称,且满足G(x)G(x);对于C,f (x1)11,定义域不关于原点对称;对于D,f (x1)11,定义域不关于原点对称故选B法二:f (x)1,为保证函数变换之后为奇函数,需将函数yf (x)的图像向右平移一个单位长度,再向上平移一个单位长度,得到的图像对应的函数为yf (x1)1,故选B6已知函数f (x)为奇函数,则f (a)()A1B1C0D1C函数f (x)是奇函数,f (x)f (x),则有f (1)f (1),即1aa1,即2a2,得a1(符合题意),f (x)f (1
4、)(1)2(1)0二、填空题7已知函数f (x)是定义在R上的奇函数,当x(,0)时,f (x)log2(x),则f (f (2)_0f (2)f (2)log221,所以f (f (2)f (1)log2108已知f (x)是R上的偶函数,且当x0时,f (x)x2x1,则当x0时,f (x)_x2x1当x0时,x0,则f (x)(x)2(x)1x2x1,又f (x)是偶函数,所以f (x)f (x)x2x19已知函数f (x)x1,f (a)2,则f (a)_4法一:f (a)f (a)2f (a)2f (a)4法二:由已知得f (a)a12,即a3,所以f (a)a11314三、解答题1
5、0f (x)为R上的奇函数,当x0时,f (x)2x23x1,求f (x)的解析式解当x0时,x0,则f (x)2(x)23(x)12x23x1由于f (x)是奇函数,故f (x)f (x),所以当x0时,f (x)2x23x1因为f (x)为R上的奇函数,故f (0)0综上可得f (x)的解析式为f (x)11已知函数f (x)是奇函数(1)求实数m的值;(2)若函数f (x)在区间1,a2上单调递增,求实数a的取值范围解(1)设x0,则x0,所以f (x)(x)22(x)x22x又f (x)为奇函数,所以f (x)f (x),于是x0时,f (x)x22xx2mx,所以m2(2)要使f (
6、x)在1,a2上单调递增,结合f (x)的图像(如图所示)知所以1a3,故实数a的取值范围是(1,31已知函数f (x)ln(ex)ln(ex),则f (x)是()A奇函数,且在(0,e)上是增函数B奇函数,且在(0,e)上是减函数C偶函数,且在(0,e)上是增函数D偶函数,且在(0,e)上是减函数A由得exe,即函数f (x)的定义域为(e,e),又f (x)ln(ex)ln(ex)f (x),因而f (x)是奇函数,又函数yln(ex)是增函数,yln(ex)是减函数,则f (x)ln(ex)ln(ex)为增函数,故选A2若定义在R上的偶函数f (x)和奇函数g(x)满足f (x)g(x)
7、ex,则g(x)()AexexB(exex)C(exex)D(exex)D因为f (x)g(x)ex,所以f (x)g(x)f (x)g(x)ex,所以g(x)(exex)3设f (x)是定义在R上的奇函数,且对任意实数x,恒有f (x2)f (x)当x0,2时,f (x)2xx2(1)求证:f (x)是周期函数;(2)当x2,4时,求f (x)的解析式解(1)证明:f (x2)f (x),f (x4)f (x2)f (x)f (x)是周期为4的周期函数(2)x2,4,x4,2,4x0,2,f (4x)2(4x)(4x)2x26x8f (4x)f (x)f (x),f (x)x26x8,即f
8、(x)x26x8,x2,41已知函数f (x)log2(x)是奇函数,则a_,若g(x)则g(g(1)_1由f (x)log2(x)得x0,则a0,所以函数f (x)的定义域为R因为函数f (x)是奇函数,所以f (0)log20,解得a1所以g(1)f (1)log2(1)0,g(g(1)212对于函数f (x),若在定义域D内存在实数x0满足f (2x0)f (x0),则称函数yf (x)为“类对称函数”(1)判断函数g(x)x22x1是否为“类对称函数”?若是,求出所有满足条件的x0的值;若不是,请说明理由;(2)若函数h(x)3xt为定义在(1,3)上的“类对称函数”,求实数t的取值范围解(1)是,且满足条件的x0为1g(x)(x1)2,设实数x0满足g(2x0)g(x0),即(2x01)2(x01)2,解得x01,所以函数g(x)是“类对称函数”,且满足条件的x0为1(2)因为h(x)是“类对称函数”,所以存在x0(1,3),使得3t(3t),t(33),设u3,则t,所以t的取值范围是