1、2.万有引力定律学 习 目 标知 识 脉 络1.能根据开普勒定律和牛顿第三定律推导出太阳与行星之间的引力表达式(重点)2理解万有引力定律的含义(重点)3知道万有引力表达式的适用条件,会用它进行计算(重点、难点)4知道万有引力常量是重要的物理常量之一.万 有 引 力 定 律1牛顿的假设(1)苹果从树上落向地面而不飞向天空,是因为受到了地球的吸引力(2)月亮绕地球做圆周运动表明月球受到了地球的吸引力2万有引力定律(1)内容:任何两个物体之间都存在相互作用的引力,引力的大小与这两个物体的质量的乘积成正比,与这两个物体之间的距离的平方成反比(2)公式:FG,式中质量的单位用kg,距离的单位用m,力的单
2、位用N,G为引力常量是一个与物质种类无关的普适常量(3)适用条件:适用于相距很远的天体,这时可以将其看作质点适用于质量均匀分布的球体,这时r指球心间的距离1公式FG中G是比例系数,与太阳和行星都没关系()2地球对月球的引力大于月球对地球的引力()3根据万有引力公式可知,当两个物体的距离趋近于零时,万有引力趋近于无穷大()我们听说过很多关于月亮的传说,如“嫦娥奔月”(如图321所示)已成了家喻户晓的神话故事我们每个月都能看到月亮的圆缺变化月球为什么会绕地球运动而没有舍弃地球或投向地球的怀抱?图321【提示】地球与月球之间存在着引力,转动的月球既不会弃地球而去,也不会投向地球的怀抱,是因为地球对月
3、球的万有引力提供了月球绕地球做圆周运动的向心力,使月球不停地绕地球运动如图322所示,太阳系中的行星围绕太阳做匀速圆周运动图322探讨1:为什么行星会围绕太阳做圆周运动?【提示】因为行星受太阳的引力探讨2:太阳对行星的引力与行星对太阳的引力大小是否相等?【提示】根据牛顿第三定律可知引力相等1推导过程万有引力公式FG的得出,概括起来导出过程如下表所示:2万有引力的四个特性特性内容普遍性万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力相互性两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足大小相等,方向相反,作用在两个物体上宏观性地面
4、上的一般物体之间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用特殊性两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,而与它们所在空间的性质无关,也与周围是否存在其他物体无关1甲、乙两个质点间的万有引力为F,若甲物体的质量不变,乙物体的质量增加到原来的2倍,同时,它们之间的距离减为原来的一半,则甲、乙两物体间的万有引力大小将变为() 【导学号:22852060】AFB.C8F D4F【解析】由万有引力定律可得:FG;FG8G8F,故选项C正确【答案】C2某实心匀质球半径为R,质量为M,在球外离球面h高处有一质量为m的质
5、点,则其受到的万有引力大小为() 【导学号:22852061】AGBGCG DG【解析】万有引力定律中r表示两个质点间的距离,因为匀质球可看成质量集中于球心上,所以rRh.【答案】B3(多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F,行星对太阳的引力F ,其中M、m、r分别为太阳、行星质量和太阳与行星间的距离下列说法正确的是()A由F和F,FFmMBF和F大小相等,是作用力与反作用力CF和F大小相等,是同一个力D太阳对行星的引力提供行星绕太阳做圆周运动的向心力【解析】F和F大小相等、方向相反,是作用力和反作用力,太阳对行星的引力是行星绕太阳做圆周运动的向心力,故正确答
6、案为B、D.【答案】BD万有引力定律的应用方法(1)首先分析能否满足用FG公式求解万有引力的条件(2)明确公式中各物理量的大小(3)利用万有引力公式求解引力的大小及方向引 力 常 量1在1798年,即牛顿发现万有引力定律一百多年以后,英国物理学家卡文迪许利用扭秤实验,较准确地测出了引力常量. G6.671011 Nm2/kg2.2意义:应用万有引力定律能进行定量运算,显示出其真正的实用价值3知道G的值后,利用万有引力定律可以计算出天体的质量,卡文迪许也因此被称为“能称出地球质量的人”1引力常量是牛顿首先测出的()2卡文迪许通过改变质量和距离,证实了万有引力的存在及万有引力定律的正确性()3卡文
7、迪许第一次测出了引力常量,使万有引力定律能进行定量计算,显示出真正的实用价值()卡文迪许为什么被人们称为“能称出地球质量的人”?【提示】因为卡文迪许测出引力常量G值之后,它使万有引力定律有了真正的实用价值,利用万有引力定律便可以计算出地球的质量,所以卡文迪许被称为“能称出地球质量的人”万有引力定律是自然界的基本规律之一,在物理学上占有非常重要的地位然而,牛顿当时却未能给出准确的引力常量一般物体间的引力太小,很难用实验测定引力常量探讨1:是谁测出了引力常量?他是如何测出的?【提示】卡文迪许,巧妙地利用扭秤装置,如图卡文迪许测定引力常量的实验原理图探讨2:为什么我们感觉不到两个人之间的万有引力?【
8、提示】引力常量很小,两个人之间的万有引力很微弱,故我们感觉不到1关于引力常量的说明(1)测定引力常量的理论公式:G,单位为Nm2/kg2.(2)物理意义:引力常量在数值上等于两个质量都是1 kg的质点相距1 m时的相互吸引力(3)由于引力常量G非常小,我们日常接触到的物体间的引力非常小,但天体间的万有引力却非常大. 2引力常量测定的意义(1)卡文迪许利用扭秤装置通过改变小球的质量和距离,证实了万有引力的存在及万有引力定律的正确性(2)引力常量的确定使万有引力定律能够进行定量计算,显示出其真正的使用价值(3)卡文迪许扭秤实验是物理学上非常著名和重要的实验,标志着力学实验精密程度的提高,开创了测量
9、弱力的新时代,学习时要注意了解和体会前人是如何巧妙地将物体间的非常微小的力显现和测量出来的4(多选)关于引力常量,下列说法正确的是()A引力常量是两个质量为1 kg的质点相距1 m时的相互吸引力B牛顿发现了万有引力定律时,给出了引力常量的值C引力常量的测出,证明了万有引力的的正确性D引力常量的测定,使人们可以测出天体的质量【解析】引力常量在数值上等于质量均为1 kg的两个均匀球体相距1 m时相互引力的大小,故A错牛顿发现万有引力定律时,还不知道引力常量的值,故B错引力常量的测出证明了万有引力定律的正确性,同时使万有引力定律具有实用价值,故C、D正确【答案】CD5(多选)卡文迪许利用如图323所示的扭秤实验装置测量了引力常量G.为了测量石英丝极微小的扭转角,该实验装置中采取使“微小量放大”的主要措施是()图323A减小石英丝的直径选修9B增大T形架横梁的长度C利用平面镜对光线的反射D增大刻度尺与平面镜之间的距离【解析】利用平面镜对光线的反射,可以将微小偏转放大,而且刻度尺离平面镜越远,放大尺寸越大,故只有选项C、D正确【答案】CD6在某次测定引力常量的实验中,两金属球的质量分别为m1和m2,球心间的距离为r,若测得两金属球间的万有引力大小为F,则此次实验得到的引力常量为() 【导学号:22852062】A.B.C. D.【解析】由万有引力定律FG得G,所以B项正确【答案】B