1、54数列求和一、选择题1若数列an的通项公式为an2n2n1,则数列an的前n项和为()A2nn21B2n1n21C2n1n22 D2nn22解析:Sn2n12n2.答案:C2(2014武汉质检)已知数列an的通项公式是an,其前n项和Sn,则项数n()A13 B10 C9 D6解析:an1,Snnn1,n6.答案:D3已知数列an的前n项和为Sn,若an(nN*),则S2009的值为()A. B.1C. D.1解析:an,S2009()()(),故选C.答案:C4若数列an的通项公式是an(1) n(3n2),则a1a2a10()A15 B12C12 D15解析:a1a2a1014710(1
2、)10(3102)(14)(710)(1)9(392)(1)10(3102)3515.答案:A51(12)(1222)(1222210)的值是()A21111 B21113C21213 D21311解析:设an12222n1,则an2n1,S11(211)(221)(2111)222211111121213.答案:C614916(1)n1n2()A. BC(1)n1 D以上答案均不对解析:当n为偶数时,14916(1)n1n237(2n1);当n为奇数时,14916(1)n1n2372(n1)1n2n2.综上可得,14916(1)n1n2(1)n1.答案:C二、填空题7在数列an中,a11,a
3、22,且an2an1(1)n(nN*),则S100_.解析:n为奇数时,an1,n为偶数时,annS10050124100502600答案:26008数列an的前n项和为Sn,且a11,an13Sn(n1,2,3,),则log4S10_.解析:an13Sn,an3Sn1(n2)两式相减得an1an3(SnSn1)3an,an14an,即4.an从第2项起是公比为4的等比数列当n1时,a23S13,n2时,an34n2,S10a1a2a10133434234813(1448)13149149.log4S10log4499.答案:99若110(xN*),则x_.答案:10三、解答题10已知等差数列
4、an满足a20,a6a810.(1)求数列an的通项公式;(2)求数列的前n项和解析:(1)设等差数列an的公差为d,由已知条件可得解得故数列an的通项公式为an2n.(2)设数列的前n项和为Sn,即Sna1,故S11,.所以,当n1时,a11()1(1)所以Sn.综上,数列的前n项和Sn.11等比数列an的各项均为正数,且2a13a21,a9a2a6.(1)求数列an的通项公式;(2)设bnlog3a1log3a2log3an,求数列的前n项和解析:(1)设数列an的公比为q.由a9a2a6得a9a,所以q2.由条件可知q0,故q.由2a13a21得2a13a1q1,得a1.故数列an的通项
5、公式为an.(2)bnlog3a1log3a2log3an(12n).故2(),2(1)()().所以数列的前n项和为.12(2014龙岩质检)已知an是一个公差大于0的等差数列,且满足a3a655,a2a716.(1)求数列an的通项公式;(2)若数列an和数列bn满足等式:an(n为正整数),求数列bn的前n项和Sn.解析:(1)方法一:设等差数列an的公差为d,则依题意知d0.由a2a716,得2a17d16.由a3a655,得(a12d)(a15d)55.由得2a1167d,将其代入得(163d)(163d)220,即2569d2220,d24.又d0,d2.代入得a11.an12(n
6、1)2n1.方法二:由等差数列的性质得:a2a7a3a6,由韦达定理知,a3,a6是方程x216x550的根,解方程得x5或x11.设公差为d,则由a6a33d,得d.d0,a35,a611,d2,a1a32d541.故an2n1.(2)方法一:当n1时,a1,b12.当n2时,an,an1,两式相减得anan1,bn2n1.因此bn当n1时,S1b12;当n2时,Snb1b2b3bn22n26.当n1时上式也成立当n为正整数时都有Sn2n26.方法二:令cn,则有anc1c2cn,an1c1c2cn1,两式相减得an1ancn1,由(1)得a11,12,cn2(n2),即当n2时,bn2n1.又当n1时,b12a12,bn于是Snb1b2b3bn223242n122223242n1442n26,即Sn2n26.