1、高二数学月一参考答案1D 2C 3C 4A 5.B 6D 7D 8B 9C 10B 11D 12D133 14 15. 5 1617.(1)取的中点,连接,为中点,为的中位线,又,四边形为平行四边形,又平面,平面平面(2)平面, 平面,平面取的中点,连接,又,平面平面18.(1) 2 (2)19. (1)当为棱中点,为棱中点时,直线BC垂直于平面(2)因为,所以直线平面, ,又所以,设点是的中点,连接,则,所以, 又,而,设点到平面的距离为,则有,即,即点到平面的距离为20. 解:(1):在直三棱柱ABCA1B1C1中,BC=CC1=BB1,点N是B1C的中点,BNB1CABBC,ABBB1,
2、BB1BC=BAB平面B1BCC1B1C平面B1BCC1B1CAB,即B1CGB又BNBG=B,BN、BG平面BNGB1C平面BNG(2)当G是棱AB的中点时,CG平面AB1M证明如下:连接AB1,取AB1的中点H,连接HG、HM、GC,则HG为AB1B的中位线GHBB1,GH=BB1由已知条件,B1BCC1为正方形CC1BB1,CC1=BB1M为CC1的中点,MCGH,且MC=GH四边形HGCM为平行四边形GCHM又GC平面AB1M,HM平面AB1M,CG平面AB1M21. (1)连接,由题意可知,均为正三角形所以,又,平面,平面,所以平面,又平面,所以 (2)又平面即为三棱锥的高在中,在中,边上的高,所以的面积设点到平面的距离为,由得,又,所以,解得故点到平面的距离为 设直线与平面所成的角为则,所以直线与平面所成的角的正弦值为 22. (1)连结AC,BD交于点O,连结PO,则PO面ABCD, PAO就是PA与底面ABCD所成的角, tanPAO= 又AB=,则PO=AOtanPAO = 设F为外接球球心,连FA,易知FA=FP,设FO=x,则(2)连结EO,由于O为BD中点,E为PD中点,所以 就是异面直线PD与AE所成的角 在Rt中, 由,可知面所以, 在Rt中,即异面直线PD与AE所成角的正切值为