1、高考资源网() 您身边的高考专家第四节 函数f(x)Asin(x)的图像A组1(2009年高考浙江卷改编)已知a是实数,则函数f(x)1asinax的图象不可能是_解析:函数的最小正周期为T,当|a|1时,T2.当0|a|2,观察图形中周期与振幅的关系,发现不符合要求答案:2(2009年高考湖南卷改编)将函数ysinx的图象向左平移(00)个单位,所得图象对应的函数为奇函数,则的最小值为_解析:因为f(x)sinxcosx2sin(x),f(x)的图象向右平移个单位所得图象对应的函数为奇函数,则的最小值为.答案:4如图是函数f(x)Asin(x)(A0,0,),xR的部分图象,则下列命题中,正
2、确命题的序号为_函数f(x)的最小正周期为;函数f(x)的振幅为2;函数f(x)的一条对称轴方程为x;函数f(x)的单调递增区间为,;函数的解析式为f(x)sin(2x)解析:据图象可得:A,T,故2,又由f()sin(2)1,解得2k(kZ),又0),在y轴右侧的第一个最高点的横坐标为. (1)求;(2)若将函数f(x)的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求函数g(x)的最大值及单调递减区间解:(1)f(x)sin2xcos2xsin(2x),令2x,将x代入可得:1.(2)由(1)得f(x)sin(2x),经过题设的变化
3、得到的函数g(x)sin(x),当x4k,kZ时,函数取得最大值.令2kx2k(kZ),4kx4k(kZ)即x4k,4k,kZ为函数的单调递减区间B组1(2009年高考宁夏、海南卷)已知函数ysin(x)(0,)的图象如图所示,则_.解析:由图可知,2,T,ysin(x)又sin()1,sin()1,2k,kZ.0,|0)的最小正周期为,为了得到函数g(x)cosx的图象,只要将yf(x)的图象_解析:f(x)sin(x)(xR,0)的最小正周期为,故2.又f(x)sin(2x)g(x)sin2(x)sin(2x)cos2x.答案:向左平移个单位长度4(2009年高考辽宁卷改编)已知函数f(x
4、)Acos(x) 的图象如图所示,f(),则f(0)_.解析:,3.又(,0)是函数的一个上升段的零点,32k(kZ),得2k,kZ,代入f(),得A,f(0). 答案:5将函数ysin(2x)的图象向_平移_个单位长度后所得的图象关于点(,0)中心对称解析:由ysin(2x)sin2(x)可知其函数图象关于点(,0)对称,因此要使平移后的图象关于(,0)对称,只需向右平移即可答案:右6(2010年深圳调研)定义行列式运算:a1a4a2a3,将函数f(x)的图象向左平移m个单位(m0),若所得图象对应的函数为偶函数,则m的最小值是_解析:由题意,知f(x)sinxcosx2(sinxcosx)
5、2sin(x),其图象向左平移m个单位后变为y2sin(xm),平移后其对称轴为xmk,kZ.若为偶函数,则x0,所以mk(kZ),故m的最小值为.答案:7(2009年高考全国卷改编)若将函数ytan(x)(0)的图象向右平移个单位长度后,与函数ytan(x)的图象重合,则的最小值为_解析:ytan(x)向右平移个单位长度后得到函数解析式ytan(x),即ytan(x),显然当k(kZ)时,两图象重合,此时6k(kZ)0,k0时,的最小值为.答案:8给出三个命题:函数y|sin(2x)|的最小正周期是;函数ysin(x)在区间,上单调递增;x是函数ysin(2x)的图象的一条对称轴其中真命题的
6、个数是_解析:由于函数ysin(2x)的最小正周期是,故函数y|sin(2x)|的最小正周期是,正确;ysin(x)cosx,该函数在,)上单调递增, 正确;当x时,ysin(2x)sin()sin()cos,不等于函数的最值,故x不是函数ysin(2x)的图象的一条对称轴,不正确答案:29(2009年高考上海卷)当0x1时,不等式sinkx恒成立,则实数k的取值范围是_解析:当0x1时,ysin的图象如图所示,ykx的图象在0,1之间的部分应位于此图象下方,当k0时,ykx在0,1上的图象恒在x轴下方,原不等式成立当k0,kxsin时,在x0,1上恒成立,k1即可故k1时,x0,1上恒有si
7、nkx.答案:k110(2009年高考重庆卷)设函数f(x)(sinxcosx)22cos2x(0)的最小正周期为.(1)求的值;(2)若函数yg(x)的图象是由yf(x)的图象向右平移个单位长度得到,求yg(x)的单调增区间解:(1)f(x)sin2xcos2x2sinxcosx1cos2xsin2xcos2x2sin(2x)2,依题意,得,故.(2)依题意,得g(x)sin3(x)2sin(3x)2.由2k3x2k(kZ),解得kxk(kZ)故g(x)的单调增区间为k,k(kZ)11(2009年高考陕西卷)已知函数f(x)Asin(x),xR(其中A0,0,00,|.(1)若coscoss
8、insin0,求的值;(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数解:法一:(1)由coscossinsin0得coscossinsin0,即cos()0.又|,.(2)由(1)得,f(x)sin(x)依题意,又T,故3,f(x)sin(3x)函数f(x)的图象向左平移m个单位后所对应的函数为g(x)sin3(xm),g(x)是偶函数当且仅当3mk(kZ),即m(kZ)从而,最小正实数m.法二:(1)同法一(2)由(1)得 ,f(x)sin(x)依题意,.又T,故3,f(x)sin(3x)函数f(x)的图象向左平移m个单位后所对应的函数为g(x)sin3(xm)g(x)是偶函数当且仅当g(x)g(x)对xR恒成立,亦即sin(3x3m)sin(3x3m)对xR恒成立sin(3x)cos(3m)cos(3x)sin(3m)sin3xcos(3m)cos3xsin(3m),即2sin3xcos(3m)0对xR恒成立cos(3m)0,故3mk(kZ),m(kZ),从而,最小正实数m.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u 版权所有高考资源网