1、(数学2必修)第四章 圆与方程 综合训练B组一、选择题1若直线被圆所截得的弦长为,则实数的值为( )A或 B或 C或 D或2直线与圆交于两点,则(是原点)的面积为( ) 3直线过点,与圆有两个交点时,斜率的取值范围是( )A BCD4已知圆C的半径为,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为( )AB CD 5若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是( ) A. B. C. D. 设直线过点,且与圆相切,则的斜率是()ABCD二、填空题1直线被曲线所截得的弦长等于 2圆:的外有一点,由点向圆引切线的长_ 2 对于任意实数,直线与圆的位置关系是_4动圆的圆心的
2、轨迹方程是 .为圆上的动点,则点到直线的距离的最小值为_.三、解答题求过点向圆所引的切线方程。求直线被圆所截得的弦长。已知实数满足,求的取值范围。已知两圆,求(1)它们的公共弦所在直线的方程;(2)公共弦长。圆和方程 综合训练B组一、选择题 1.D 2.D 弦长为,3.C ,相切时的斜率为4.D 设圆心为5.A 圆与轴的正半轴交于6.D 得三角形的三边,得的角 二、填空题1. ,2. 3.相切或相交 ;另法:直线恒过,而在圆上4. 圆心为,令 5. 三、解答题1.解:显然为所求切线之一;另设而或为所求。2.解:圆心为,则圆心到直线的距离为,半径为 得弦长的一半为,即弦长为。3.解:令则可看作圆上的动点到点的连线的斜率 而相切时的斜率为,。4.解:(1);得:为公共弦所在直线的方程;(2)弦长的一半为,公共弦长为。