ImageVerifierCode 换一换
格式:DOC , 页数:31 ,大小:1.76MB ,
资源ID:75798      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-75798-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(七年级数学下册 第10章 轴对称、平移与旋转单元综合测试(含解析)(新版)华东师大版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

七年级数学下册 第10章 轴对称、平移与旋转单元综合测试(含解析)(新版)华东师大版.doc

1、第10章 轴对称、平移与旋转一、选择题(共17小题)1(2015河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()ABCD2(2015荆州)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()ABCD3(2015绥化)如图,在矩形ABCD中,AB=10,BC=5若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A10B8C5D64(2015遵义)如图,四边形ABCD中,C=50,B=D=90,E、F分别是BC、DC上的点,当AEF的周长最小时,EAF的度数为()A50B60C70D805

2、(2015营口)如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是()A25B30C35D406(2015黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B;连接AB与直线l相交于点C,则点C为所求作的点在解决这个问题时没有运用到的知识或方法是()A转化思想B三角形的两边之和大于第三边C两点之间,线段最短D三角形的一个外角大于与它不相邻的任意一个内角7(2015内江)如图,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD

3、内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()AB2C2D8(2014鄂尔多斯)如图,在RtABC中,C=90,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为()A3+2B10CD9(2014永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()ABCD10(2013崇左)如图所示,如果将矩形纸沿虚线对折后,沿虚线剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A12B18C2+D2+211(2013菏泽)如

4、图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120 的菱形,剪口与第二次折痕所成角的度数应为()A15或30B30或45C45或60D30或6012(2014绍兴)将一张正方形纸片,按如图步骤,沿虚线对折两次,然后沿中的虚线剪去一个角,展开铺平后的图形是()ABCD13(2015南宁)如图,AB是O的直径,AB=8,点M在O上,MAB=20,N是弧MB的中点,P是直径AB上的一动点若MN=1,则PMN周长的最小值为()A4B5C6D714(2014六盘水)将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()

5、ABCD15(2014南宁)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A正三角形B正方形C正五边形D正六边形16(2013自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A9B93CD17(2014台湾)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()ABCD二、填空题(共11小题)18(2015杭州)如

6、图,在四边形纸片ABCD中,AB=BC,AD=CD,A=C=90,B=150将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平若铺平后的图形中有一个是面积为2的平行四边形,则CD=19(2015玉林)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是20(2015武汉)如图,AOB=30,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是21(2015攀枝花)如图,在边长为2的等边

7、ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为22(2015天津)在每个小正方形的边长为1的网格中点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF()如图,当BE=时,计算AE+AF的值等于()当AE+AF取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)23(2015安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为24(2015鄂州)如图,AOB=30,点M、N分别是射线OA、OB上的动点,OP平

8、分AOB,且OP=6,当PMN的周长取最小值时,四边形PMON的面积为25(2014枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种26(2014东营)在O中,AB是O的直径,AB=8cm, =,M是AB上一动点,CM+DM的最小值是cm27(2014宿迁)如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是28(2015盘锦)如图,菱形ABCD的边长为2,DAB=60,E为BC的中点,在对角线AC上存在一点P,使PBE的周长最小,则PBE的周长的最小值

9、为三、解答题(共2小题)29(2014义乌市)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(1,1),(0,0)和(1,0)(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可)30(2014齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标华师大新版七年级(下)

10、近3年中考题单元试卷:第10章 轴对称、平移与旋转参考答案与试题解析一、选择题(共17小题)1(2015河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()ABCD【考点】剪纸问题【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论故选C【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养2(2015荆州)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()ABCD【考点】剪

11、纸问题【分析】根据题意直接动手操作得出即可【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便3(2015绥化)如图,在矩形ABCD中,AB=10,BC=5若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A10B8C5D6【考点】轴对称-最短路线问题【分析】过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上

12、的高为2,所以BE=4ABCEFB,=,即=EF=8故选B【点评】本题考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解4(2015遵义)如图,四边形ABCD中,C=50,B=D=90,E、F分别是BC、DC上的点,当AEF的周长最小时,EAF的度数为()A50B60C70D80【考点】轴对称-最短路线问题【专题】压轴题【分析】据要使AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A,A,即可得出AAE+A=HAA=50,进而得出AEF+AFE=2(AAE+A),即可得出答案【解答】解:作A关于BC和CD的对称点A,A,连

13、接AA,交BC于E,交CD于F,则AA即为AEF的周长最小值作DA延长线AH,C=50,DAB=130,HAA=50,AAE+A=HAA=50,EAA=EAA,FAD=A,EAA+AAF=50,EAF=13050=80,故选:D【点评】本题考查的是轴对称最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键5(2015营口)如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是()A25B30C35D40【考点】轴对称-最短路线问题【专题】压轴题【

14、分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,COA=POA;PN=DN,OP=OD,DOB=POB,得出AOB=COD,证出OCD是等边三角形,得出COD=60,即可得出结果【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:点P关于OA的对称点为D,关于OB的对称点为C,PM=DM,OP=OD,DOA=POA;点P关于OB的对称点为C,PN=CN,OP=OC,COB=POB,OC=OP=OD,AOB

15、=COD,PMN周长的最小值是5cm,PM+PN+MN=5,DM+CN+MN=5,即CD=5=OP,OC=OD=CD,即OCD是等边三角形,COD=60,AOB=30;故选:B【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键6(2015黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B;连接AB与直线l相交于点C,则点C为所求作的点在解决这个问题时没有运用到的知识或方法是()A转化思想B三角形的两边之和大于第三边C两点之间,线段最短D三角形

16、的一个外角大于与它不相邻的任意一个内角【考点】轴对称-最短路线问题【分析】利用两点之间线段最短分析并验证即可即可【解答】解:点B和点B关于直线l对称,且点C在l上,CB=CB,又AB交l与C,且两条直线相交只有一个交点,CB+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边故选D【点评】此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点7(2015内江)如图,正方形ABCD的面积为12,ABE是等边三角形,

17、点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()AB2C2D【考点】轴对称-最短路线问题;正方形的性质【分析】由于点B与D关于AC对称,所以BE与AC的交点即为P点此时PD+PE=BE最小,而BE是等边ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果【解答】解:由题意,可得BE与AC交于点P点B与D关于AC对称,PD=PB,PD+PE=PB+PE=BE最小正方形ABCD的面积为12,AB=2又ABE是等边三角形,BE=AB=2故所求最小值为2故选B【点评】此题考查了轴对称最短路线问题,正方形的性质,等边三角形的性质,找到点P

18、的位置是解决问题的关键8(2014鄂尔多斯)如图,在RtABC中,C=90,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为()A3+2B10CD【考点】轴对称-最短路线问题【分析】作点A关于BC的对称点A,过点A作ADAB交BC、AB分别于点E、D,根据轴对称确定最短路线问题,AD的长度即为AE+DE的最小值,利用勾股定理列式求出AB,再利用ABC的正弦列式计算即可得解【解答】解:如图,作点A关于BC的对称点A,过点A作ADAB交BC、AB分别于点E、D,则AD的长度即为AE+DE的最小值,AA=2AC=26=12,ACB=90,BC=8,AC=6,AB=10,

19、sinBAC=,AD=AAsinBAC=12=,即AE+DE的最小值是故选D【点评】本题考查了利用轴对称确定最短路线问题,主要利用了勾股定理,垂线段最短,锐角三角函数的定义,难点在于确定出点D、E的位置9(2014永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()ABCD【考点】利用轴对称设计图案【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,即可作出判断【解答】解:轴对称图形的只有C故选:C【点评】本题考查了轴对称图形的定义,解答此

20、题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形,对称轴是折痕所在的这条直线叫做对称轴10(2013崇左)如图所示,如果将矩形纸沿虚线对折后,沿虚线剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A12B18C2+D2+2【考点】剪纸问题【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线为矩形的对称轴,依据对称轴的性质虚线平分矩形的长,即可得到沿虚线裁下的直角三角形的短直角边为1024=1,虚线为斜边,据勾股定理可得虚线为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三

21、角形的周长【解答】解:根据题意,三角形的底边为2(1024)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2答:展开后等腰三角形的周长为2+2故选D【点评】本题主要考查了剪纸问题以及考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来11(2013菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120 的菱形,剪口与第二次折痕所成角的度数应为()A15或30B30或45C45或60D30或60【考点】剪纸问题【分析】折痕为AC与BD,BAD=120,根据菱形的性质:菱形的对角线平分对角,可得ABD=30

22、,易得BAC=60,所以剪口与折痕所成的角a的度数应为30或60【解答】解:四边形ABCD是菱形,ABD=ABC,BAC=BAD,ADBC,BAD=120,ABC=180BAD=180120=60,ABD=30,BAC=60剪口与折痕所成的角a的度数应为30或60故选D【点评】此题主要考查菱形的判定以及折叠问题,关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角12(2014绍兴)将一张正方形纸片,按如图步骤,沿虚线对折两次,然后沿中的虚线剪去一个角,展开铺平后的图形是()ABCD【考点】剪纸问题【分析】按照题意要求,动手操作一下,可得到正确的答案【解答】解:由题意要求知,展开铺平后的图形是

23、B故选:B【点评】此题主要考查了剪纸问题,此类问题应亲自动手折一折,剪一剪看看,可以培养空间想象能力13(2015南宁)如图,AB是O的直径,AB=8,点M在O上,MAB=20,N是弧MB的中点,P是直径AB上的一动点若MN=1,则PMN周长的最小值为()A4B5C6D7【考点】轴对称-最短路线问题;圆周角定理【专题】压轴题【分析】作N关于AB的对称点N,连接MN,NN,ON,ON,由两点之间线段最短可知MN与AB的交点P即为PMN周长的最小时的点,根据N是弧MB的中点可知A=NOB=MON=20,故可得出MON=60,故MON为等边三角形,由此可得出结论【解答】解:作N关于AB的对称点N,连

24、接MN,NN,ON,ONN关于AB的对称点N,MN与AB的交点P即为PMN周长的最小时的点,N是弧MB的中点,A=NOB=MON=20,MON=60,MON为等边三角形,MN=OM=4,PMN周长的最小值为4+1=5故选:B【点评】本题考查的是轴对称最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点14(2014六盘水)将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()ABCD【考点】剪纸问题【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地

25、呈现【解答】解:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论故选:B【点评】本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现15(2014南宁)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A正三角形B正方形C正五边形D正六边形【考点】剪纸问题【专题】操作型【分析】先求出O=60,再根据直角三角形两锐角互余沿折痕展开依次进行判断即

26、可得解【解答】解:平角AOB三等分,O=60,9060=30,剪出的直角三角形沿折痕展开一次得到底角是30的等腰三角形,再沿另一折痕展开得到有一个角是30的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形故选:A【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便16(2013自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A9B93CD【考点】剪纸问题;展开图折叠成几何体;等边三角形的性质【专题】压轴题;操作型【分析】这个棱柱的侧面展开正好是一个长方形,长为3,宽为3,减去两个三角形的高,再用长方形的面积公

27、式计算即可解答【解答】解:将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个正三角形的底面边长为1,高为=,侧面积为长为3,宽为3的长方形,面积为93故选:B【点评】此题主要考查了剪纸问题的实际应用,动手操作拼出图形,并能正确进行计算是解答本题的关键17(2014台湾)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()ABCD【考点】利用轴对称设计图案【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案【解答】解:如图所示:故选:A【点评】此

28、题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念二、填空题(共11小题)18(2015杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,A=C=90,B=150将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+或4+2【考点】剪纸问题【专题】压轴题【分析】根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长【解答】解:如图1所示:作AEBC,延长AE交CD于点N,过点B作BTEC于点T,当四边形ABCE为平行四边形,AB=BC,四边形A

29、BCE是菱形,A=C=90,B=150,BCAN,ADC=30,BAN=BCE=30,则NAD=60,AND=90,四边形ABCE面积为2,设BT=x,则BC=EC=2x,故2xx=2,解得:x=1(负数舍去),则AE=EC=2,EN=,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,BE=BF,平行四边形BEDF是菱形,A=C=90,B=150,ADB=BDC=15,BE=DE,AEB=30,设AB=y,则BE=2y,AE=y,四边形BEDF面积为2,ABDE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2故答案为:2

30、+或4+2【点评】此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键19(2015玉林)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是3【考点】轴对称-最短路线问题;正方形的性质【专题】计算题;压轴题【分析】根据最短路径的求法,先确定点E关于BC的对称点E,再确定点A关于DC的对称点A,连接AE即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积【解答】解:如图1所示,作E关于BC的对称点E,点A关于DC的对

31、称点A,连接AE,四边形AEPQ的周长最小,AD=AD=3,BE=BE=1,AA=6,AE=4DQAE,D是AA的中点,DQ是AAE的中位线,DQ=AE=2;CQ=DCCQ=32=1,BPAA,BEPAEA,=,即=,BP=,CP=BCBP=3=,S四边形AEPQ=S正方形ABCDSADQSPCQSBEP=9ADDQCQCPBEBP=93211=,故答案为:【点评】本题考查了轴对称,利用轴对称确定A、E,连接AE得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法20(2015武汉)如图,AOB=30,点M、N分别在边OA、OB上,且OM=1,ON=3,点P

32、、Q分别在边OB、OA上,则MP+PQ+QN的最小值是【考点】轴对称-最短路线问题【专题】压轴题【分析】作M关于OB的对称点M,作N关于OA的对称点N,连接MN,即为MP+PQ+QN的最小值【解答】解:作M关于OB的对称点M,作N关于OA的对称点N,连接MN,即为MP+PQ+QN的最小值根据轴对称的定义可知:NOQ=MOB=30,ONN=60,ONN为等边三角形,OMM为等边三角形,NOM=90,在RtMON中,MN=故答案为【点评】本题考查了轴对称最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键21(2015攀枝花)如图,在边长为2的等边ABC中,D为BC的中点,E

33、是AC边上一点,则BE+DE的最小值为【考点】轴对称-最短路线问题;等边三角形的性质【分析】作B关于AC的对称点B,连接BB、BD,交AC于E,此时BE+ED=BE+ED=BD,根据两点之间线段最短可知BD就是BE+ED的最小值,故E即为所求的点【解答】解:作B关于AC的对称点B,连接BB、BD,交AC于E,此时BE+ED=BE+ED=BD,根据两点之间线段最短可知BD就是BE+ED的最小值,B、B关于AC的对称,AC、BB互相垂直平分,四边形ABCB是平行四边形,三角形ABC是边长为2,D为BC的中点,ADBC,AD=,BD=CD=1,BB=2AD=2,作BGBC的延长线于G,BG=AD=,

34、在RtBBG中,BG=3,DG=BGBD=31=2,在RtBDG中,BD=故BE+ED的最小值为故答案为:【点评】本题考查的是最短路线问题,涉及的知识点有:轴对称的性质、等边三角形的性质、勾股定理等,有一定的综合性,但难易适中22(2015天津)在每个小正方形的边长为1的网格中点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF()如图,当BE=时,计算AE+AF的值等于()当AE+AF取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得

35、点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求【考点】轴对称-最短路线问题;勾股定理【专题】作图题;压轴题【分析】(1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE=,再解答即可;(2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使HBC=ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH=5,结合相似三角形选出格点K,根据,得BP=BH=4=DA,易证ADFPBE,因此可得到PE=AF,线段AP即为所求的AE+A

36、F的最小值;同理可确定F点,因为ABBC,因此首先确定格点M使DMDB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=5=3,易证DFGBEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值【解答】解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF=2.5,根据勾股定理可得:AE=,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使HBC=ADB,其次需要构造长度BP使BP=AD=4,根

37、据勾股定理可知BH=5,结合相似三角形选出格点K,根据,得BP=BH=4=DA,易证ADFPBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为ABBC,因此首先确定格点M使DMDB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=5=3,易证DFGBEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求【点评】此题考查最短路径问

38、题,关键是根据轴对称的性质进行分析解答23(2015安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为【考点】轴对称-最短路线问题;正方形的性质【专题】压轴题【分析】作E关于直线AC的对称点E,连接EF,则EF即为所求,过F作FGCD于G,在RtEFG中,利用勾股定理即可求出EF的长【解答】解:作E关于直线AC的对称点E,连接EF,则EF即为所求,过F作FGCD于G,在RtEFG中,GE=CDBEBF=412=1,GF=4,所以EF=故答案为:【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键24

39、(2015鄂州)如图,AOB=30,点M、N分别是射线OA、OB上的动点,OP平分AOB,且OP=6,当PMN的周长取最小值时,四边形PMON的面积为3654【考点】轴对称-最短路线问题【专题】压轴题【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,PMN的周长最小,此时COD是等边三角形,求得三角形PMN和COD的面积,根据四边形PMON的面积为:( SCOD+SPMN)求得即可【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PC、PD点P关于OA的对称点为C,关于OB的对称点为D,PM=CM,OP=OC

40、,COA=POA;点P关于OB的对称点为D,PN=DN,OP=OD,DOB=POB,OC=OD=OP=6,COD=COA+POA+POB+DOB=2POA+2POB=2AOB=60,COD是等边三角形,CD=OC=OD=6POC=POD,OPCD,OQ=6=3,PQ=63,设MQ=x,则PM=CM=3x,(3x)2x2=(63)2,解得x=69,SPMN=MNPQ=MQPQ=(69)(63)=63108,SCOD=36=9,SCOM=SPOM,SDON=SPON,四边形PMON的面积为:(SCOD+SPMN)=(72108)=3654故答案为3654【点评】此题主要考查轴对称最短路线问题,熟知

41、两点之间线段最短是解答此题的关键25(2014枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种【考点】利用轴对称设计图案【专题】几何图形问题【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果【解答】解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3【点评】考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形26(2014东营

42、)在O中,AB是O的直径,AB=8cm, =,M是AB上一动点,CM+DM的最小值是8cm【考点】轴对称-最短路线问题;勾股定理;垂径定理【分析】作点C关于AB的对称点C,连接CD与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出CD为直径,从而得解【解答】解:如图,作点C关于AB的对称点C,连接CD与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理, =,=,=,AB为直径,CD为直径,CM+DM的最小值是8cm故答案为:8【点评】本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小

43、值等于圆的直径的长度是解题的关键27(2014宿迁)如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是【考点】轴对称-最短路线问题;正方形的性质【专题】计算题【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解【解答】解:如图,连接AE,点C关于BD的对称点为点A,PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,正方形ABCD的边长为2,E是BC边的中点,BE=1,AE=,故答案为:【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用根据已知得

44、出两点之间线段最短可得AE就是AP+PE的最小值是解题关键28(2015盘锦)如图,菱形ABCD的边长为2,DAB=60,E为BC的中点,在对角线AC上存在一点P,使PBE的周长最小,则PBE的周长的最小值为+1【考点】轴对称-最短路线问题;菱形的性质【分析】连接BD,与AC的交点即为使PBE的周长最小的点P;由菱形的性质得出BPC=90,由直角三角形斜边上的中线性质得出PE=BE,证明PBE是等边三角形,得出PB=BE=PE=1,即可得出结果【解答】解:连结DEBE的长度固定,要使PBE的周长最小只需要PB+PE的长度最小即可,四边形ABCD是菱形,AC与BD互相垂直平分,PD=PB,PB+

45、PE的最小长度为DE的长,菱形ABCD的边长为2,E为BC的中点,DAB=60,BCD是等边三角形,又菱形ABCD的边长为2,BD=2,BE=1,DE=,PBE的最小周长=DE+BE=+1,故答案为: +1【点评】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键三、解答题(共2小题)29(2014义乌市)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(1,1),(0,0)和(1,0)(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格

46、点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质【专题】作图题【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置【解答】解:(1)如图2所示,C点的位置为(1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,1),P(1,1)都符合题意【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键30(2014齐齐哈尔)如图,已知抛物线的顶点为A(1,4),抛物线与y

47、轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标【考点】轴对称-最短路线问题;待定系数法求二次函数解析式【专题】数形结合【分析】(1)设抛物线顶点式解析式y=a(x1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)先求出点B关于x轴的对称点B的坐标,连接AB与x轴相交,根据轴对称确定最短路线问题,交点即为所求的点P,然后利用待定系数法求一次函数解析式求出直线AB的解析式,再求出与x轴的交点即可【解答】解:(1)抛物线的顶点为A(1,4),设抛物线的解析式y=a(x1)2+4,把点B(0,3)代入得,a+4=3,解得a=1,抛物线的解析式为y=(x1)2+4;(2)点B关于x轴的对称点B的坐标为(0,3),由轴对称确定最短路线问题,连接AB与x轴的交点即为点P,设直线AB的解析式为y=kx+b(k0),则,解得,直线AB的解析式为y=7x3,令y=0,则7x3=0,解得x=,所以,当PA+PB的值最小时的点P的坐标为(,0)【点评】本题考查了轴对称确定最短路线问题,待定系数法求二次函数解析式,待定系数法求一次函数解析式,(1)利用顶点式解析式求解更简便,(2)熟练掌握点P的确定方法是解题的关键

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3