1、课时作业(十二)微积分基本定理A组基础巩固1.(cosx1)dx等于()A1B0C1 D解析:(cosx1)dx(sinxx)sin0.答案:D2设f(x)则1f(x)dx的值是()A. x2dxB. 2xdxC. x2dx2xdxD. 2xdxx2dx解析:f(x)dx2xdxx2dx.答案:D3若dx3ln2,则a的值是()A6 B4C3 D2解析:dx(x2lnx)(a2lna)(1ln1)(a21)lna3ln2.a2.答案:D4若函数f(x)xmnx的导函数是f(x)2x1,则f(x)dx()A. B.C. D.解析:f(x)xmnx的导函数是f(x)2x1,f(x)x2x,f(x)
2、dx(x2x)dx.答案:A5若f(x)则f(2 012)等于()A1 B2C. D.解析:当x0时,f(x)f(x4),即f(x4)f(x),所以f(x)的周期为4,所以f(2 012)f(0)20sin3x1.故选C.答案:C6已知f(x)dx9x2dx,则f(x)6dx()A9 B12C15 D18解析:根据定积分的性质,得f(x)6dxf(x)dx6dx.f(x)dx9x2dx3x3|3,f(x)6dx36215.答案:C7已知t0,若(2x2)dx3,则t_.解析:由题意知t22t3,解得t1或3,又t0,所以t3.答案:38已知,则当(cosxsinx)dx取得最大值时,_.解析:
3、(cosxsinx)dx(sinxcosx)sincos2sin,由知当时,(cosxsinx)dx取得最大值2.答案:9已知t1,若(2x1)dxt2,则t_.解析:(2x1)dx(x2x)t2t2,从而t2t2t2,解得t2.答案:210已知f(x)ax2bxc(a0),且f(1)2,f(0)0,f(x)dx2,求a、b、c的值解析:由f(1)2得abc2,又f(x)2axb,f(0)b0,而f(x)dx(ax2bxc)dxabc,abc2,由式得a6,b0,c4.B组能力提升11已知函数f(a)sinxdx,则f()A1 B1cos1C0 Dcos11解析:f0sinxdxcosx|0(
4、cos0)1,ff(1)sinxdxcosx|1cos1.答案:B12.|x24|dx()A. B.C. D.解析:|x24|x24|dx(x24)dx(4x2)dx388.答案:C13求函数f(a)(6x24axa2)dx的最小值解析:(6x24axa2)dx(2x32ax2a2x)|22aa2,即f(a)a22a2(a1)21,当a1时,f(a)有最小值1.14计算定积分|2x3|32x|)dx.解析:方法一:令2x30,解得x;令32x0,解得x. (|2x3|32x|)dx (2x332x)dx (2x332x)dx (2x332x)dx (4x)dx6dx4xdx46x445.方法二:设f(x)|2x3|32x|如图,所求积分等于阴影部分面积,即 (|2x3|32x|)dxS2(612)3645.15(1)已知f(x)是一次函数,其图象过点(1,4),且f(x)dx1,求f(x)的解析式;(2)设f(x)axb,且 f(x)2dx1,求f(a)的取值范围解析:(1)设f(x)kxb(k0),因为函数的图象过点(1,4),所以kb4.又f(x)dx(kxb)dxb,所以b1.由得k6,b2,所以f(x)6x2.(2)由 f(x)2dx1可知, (axb)2dx1(a2x22abxb2)dx1,即2a26b23且b.于是f(a)a2b3b2b32,所以f(a).