1、课下梯度提能一、基本能力达标1在对两个变量x,y进行线性回归分析时,有下列步骤:对所求出的回归直线方程作出解释;收集数据(xi,yi),i1,2,n;求线性回归方程;求相关系数;根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量x,y具有线性相关的结论,则在下列操作顺序中正确的是()ABC D解析:选D对两个变量进行回归分析时,首先收集数据(xi,yi),i1,2,n;根据所搜集的数据绘制散点图观察散点图的形状,判断线性相关关系的强弱,求相关系数,写出线性回归方程,最后依据所求出的回归直线方程作出解释;故正确顺序是.2下列说法错误的是()A自变量取值一定时,因变量的取值带有一定随机性的两
2、个变量之间的关系叫做相关关系B在线性回归分析中,相关系数r的值越大,变量间的相关性越强C在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好解析:选B由于线性相关系数|r|1,且当|r|越大,线性相关性越强,故r,物理成绩更稳定(2)由于x与y之间具有线性相关关系,因为xiyi70 497,x70 994,所以根据回归系数公式得到0.5, 1000.510050,回归直线方程为0.5x50.当y115时,x130,即该生物理成绩达到115分时,他的数学成绩大约为130分建议:进一步加强对数学的学习,提高数学成绩
3、的稳定性,将有助于物理成绩的进一步提高4某地随着经济的发展,居民收入逐年增长,下表是该地某银行连续五年的储蓄存款(年底余额),如下表1:年份x20132014201520162017储蓄存款y(千亿元)567810为了研究计算的方便,工作人员将上表的数据进行了处理,tx2 012,zy5得到下表2:时间代号t12345z01235(1)求z关于t的线性回归方程;(2)通过(1)中的方程,求出y关于x的回归方程;(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?解:(1)3,2.2,izi45,55,1.2,2.21.231.4,1.2t1.4.(2)将tx2 012,zy5,代入1.2t1.4,得y51.2(x2 012)1.4,即1.2x2 410.8.(3)1.22 0202 410.813.2,预测到2020年年底,该地储蓄存款额可达13.2千亿元