1、2015-2016学年河南省周口市中英文学校高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1下面四种叙述能称为算法的是()A在家里一般是妈妈做饭B做米饭需要刷锅、淘米、添水、加热这些步骤C在野外做饭叫野炊D做饭必须要有米2下面的结论正确的是()A一个程序的算法步骤是可逆的B一个算法可以无止境地运算下去的C完成一件事情的算法有且只有一种D设计算法要本着简单方便的原则3如图,写出程序框图描述的算法的运行结果()A5B5C1D24下列程序执行后输出的结果是()A1B0C1D25下列语句,若最后A的输出结果为10,则a应为()A10B25C5D56利用秦九韶算法计算多项式f(x)=3x6
2、+4x5+5x4+6x3+7x2+8x+1当x=4的值的时候需要做乘法和加法的次数分别为()A66B56C55D657下列给出的四个框图,其中满足WHILE语句格式的是()A(1)(2)B(2)(3)C(2)(4)D(3)(4)8某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为则完成、这两项调查宜采用的抽样方法依次是()A分层抽样法,系统抽样法B分层抽样法,简单随机抽样法C系统抽样法,
3、分层抽样法D简单随机抽样法,分层抽样法9为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A40B30C20D1210如果两组数x1,x2,xn和y1,y2,yn的平均数分别为和,标准差分别为s1和s2,那么合为一组数x1,x2,xn,y1,y2,yn后的平均数和标准差分别是()A +,B +,C,D,11在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数B平均数C中位数D标准差
4、12如表为某班成绩的次数分配表已知全班共有38人,且众数为50分,中位数为60分,求x22y之值为何()成绩(分)20304050607090100次数(人)235x6y34A33B50C69D90二.填空题(每题5分,共20分)13如图程序运行的结果为14用更相减损术求459和357的最大公约数,需要减法的次数为15已知样本9,10,11,x,y的平均数是10,方差是4,则xy=16关于简单随机抽样,有下列说法:它要求被抽取样本的总体的个数有限;它是从总体中逐个地进行抽取;它是一种不放回抽样;它是一种等可能抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中
5、,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性其中正确的有(请把你认为正确的所有序号都写上)三.解答题(第17题10分,其余各题12分)17一个人带着三只狼和三只羚羊过河,只有一条船,该船可容纳一个人和两只动物没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃羚羊该人如何才能将动物转移过河?请设计算法18设计一个计算1357199的算法,并写出程序,画出程序框图19已知10b1(2)=a02(3),求数字a,b的值20一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本21某中学举行电脑知识竞赛,现将高一参赛
6、学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05求:(1)高一参赛学生的成绩的众数、中位数(2)高一参赛学生的平均成绩22高一三班有男同学27名,女同学21名,在一次语文测验中,男同学的平均分是82分,中位数是75分,女同学的平均分是80分,中位数是80分(1)求这次测验全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的同学至少有多少人?(3)分析男同学的平均分与中位数相差较大的主要原因是什么?2015-2016学年河南省周口市中英文学校高一(下)第一次月考
7、数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1下面四种叙述能称为算法的是()A在家里一般是妈妈做饭B做米饭需要刷锅、淘米、添水、加热这些步骤C在野外做饭叫野炊D做饭必须要有米【考点】算法的概念【分析】用算法的定义逐一来分析判断各选项的正确与否【解答】解:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,同一问题可以用不同的算法来描述,但结果一定相同,故选:B2下面的结论正确的是()A一个程序的算法步骤是可逆的B一个算法可以无止境地运算下去的C完成一件事情的算法有且只有一种D设计算法要本着简单方便的原则【考点】算法的概念【分析
8、】根据算法的基本特征,即可得到结论【解答】解:算法需每一步都按顺序进行,并且结果唯一,不能保证可逆,故A不正确;一个算法必须在有限步内完成,不然就不是问题的解了,故B不正确;一般情况下,完成一件事情的算法不止一个,但是存在一个比较好的,故C不正确;设计算法要尽量运算简单,节约时间,故D正确,故选D3如图,写出程序框图描述的算法的运行结果()A5B5C1D2【考点】程序框图【分析】根据该算法的功能是计算分段函数f(x)的函数值,把x=1代入计算即可【解答】解:该算法的功能计算分段函数f(x)=的函数值,当x=1时,由分段函数的性质得f(1)=3(1)2=5故选:A4下列程序执行后输出的结果是()
9、A1B0C1D2【考点】伪代码【分析】该程序是一个当型循环结构第一步:s=0+5=5,n=51=4;第二步:s=5+4=9,n=41=3;第三步:s=9+3=12,n=31=2;第四步:s=12+2=14,n=21=1;第五步:s=14+1=15,n=11=0【解答】解:该程序是一个当型循环结构第一步:s=0+5=5,n=51=4;第二步:s=5+4=9,n=41=3;第三步:s=9+3=12,n=31=2;第四步:s=12+2=14,n=21=1;第五步:s=14+1=15,n=11=0s=15,结束循环n=0故选B;5下列语句,若最后A的输出结果为10,则a应为()A10B25C5D5【考
10、点】顺序结构【分析】根据顺序结构的运行流程,当输入A=5时,计算A=5+15=10可得答案【解答】解:由顺序结构的运行流程得,当输入A=5时,则A=5+15=10输出A=10故选C6利用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=4的值的时候需要做乘法和加法的次数分别为()A66B56C55D65【考点】秦九韶算法;中国古代数学瑰宝【分析】利用“秦九韶算法”即可得出【解答】解:f(x)=3x6+4x5+5x4+6x3+7x2+8x+1=(3x+4)x+5)x+6)x+7)x+8)x+1,因此利用“秦九韶算法”计算多项式f(x)当x=4的值的时候需要做乘法
11、和加法的次数分别是:6,6故选:A7下列给出的四个框图,其中满足WHILE语句格式的是()A(1)(2)B(2)(3)C(2)(4)D(3)(4)【考点】程序框图【分析】WHILE语句的特点是“前测试”,对四个选项逐一判断即可得到结论【解答】解:WHILE(当型)循环是指先判断后执行,先判断指定的条件是否为真,若条件为真,执行循环条件,条件为假时退出循环根据WHILE(当型)循环的定义,逐一对四个选项判断可知,满足条件故选:B8某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查
12、为;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为则完成、这两项调查宜采用的抽样方法依次是()A分层抽样法,系统抽样法B分层抽样法,简单随机抽样法C系统抽样法,分层抽样法D简单随机抽样法,分层抽样法【考点】分层抽样方法;系统抽样方法【分析】此题为抽样方法的选取问题当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样【解答】解:依据题意,第项调查中,总体中的个体差异较大,应采用分层抽样法;第项调查总体中个体较少,应采用简单随机抽样法故选B9为了了解1200名学生对学校某项教改试验的意见,打算
13、从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A40B30C20D12【考点】系统抽样方法【分析】系统抽样中,分段的间隔(抽样距)=【解答】解:抽样距=40故选 A10如果两组数x1,x2,xn和y1,y2,yn的平均数分别为和,标准差分别为s1和s2,那么合为一组数x1,x2,xn,y1,y2,yn后的平均数和标准差分别是()A +,B +,C,D,【考点】众数、中位数、平均数;极差、方差与标准差【分析】根据平均数与标准差的定义与计算公式,进行计算即可【解答】解:数据x1,x2,xn和y1,y2,yn的平均数分别为和,则=(x1+x2+xn),=(y1+y2+
14、yn);所以数据x1,x2,xn,y1,y2,yn的平均数为=;又标准差为s1=,s2=;所以数据x1,x2,xn,y1,y2,yn的标准差是S=故选:D11在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数B平均数C中位数D标准差【考点】极差、方差与标准差;众数、中位数、平均数【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88B样本数据84,86,86,88,
15、88,88,90,90,90,90众数分别为88,90,不相等,A错平均数86,88不相等,B错中位数分别为86,88,不相等,C错A样本方差S2= (8286)2+2(8486)2+3(8686)2+4(8886)2=4,标准差S=2,B样本方差S2= (8488)2+2(8688)2+3(8888)2+4(9088)2=4,标准差S=2,D正确故选D12如表为某班成绩的次数分配表已知全班共有38人,且众数为50分,中位数为60分,求x22y之值为何()成绩(分)20304050607090100次数(人)235x6y34A33B50C69D90【考点】众数、中位数、平均数【分析】由全班共有
16、38人,列出方程x+y=50(2+3+5+6+3+4)=15,再结合众数、中位数的值分情况讨论即可确定x、y的值,由此求出x22y的值【解答】解:全班共有38人,x+y=50(2+3+5+6+3+4)=15,又众数为50,x8,当x=8时,y=7,中位数是第19,20两个数的平均数,都为60,则中位数为60,符合题意;当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(50+60)2=55,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于60,不符合题意;所以x=8,y=7,所以x22y=6414=50故选:B二.填空题(每题5分,共20分)13如图程
17、序运行的结果为【考点】伪代码【分析】从所给的赋值语句中可以看出a,b,初始赋给的值分别为2,3,4,再依次往下执行程序可得结论【解答】解:从所给的赋值语句中可以看出,a,b,初始赋给的值分别为2,3,4,接下来a是b赋给的值:a=3,b是c+2赋给的值:b=6而c又是b+4赋给的值:c=10,输出的d的值是:d=故答案为:14用更相减损术求459和357的最大公约数,需要减法的次数为5【考点】用辗转相除计算最大公约数【分析】用更相减损术求459与357的最大公约数,先用大数减去小数,再用减数和差中较大的数字减去较小的数字,这样减下去,知道减数和差相同,得到最大公约数【解答】解:使用更相减损术有
18、:459357=102;357102=255;255102=153;153102=51;10251=51,共作了5次减法故答案为:515已知样本9,10,11,x,y的平均数是10,方差是4,则xy=91【考点】极差、方差与标准差;众数、中位数、平均数【分析】先由平均数的公式列出x+y=20,然后根据方差的公式列方程,求出x和y的值即可求出xy的值【解答】解:根据平均数及方差公式,可得:9+10+11+x+y=105,(910)2+(1010)2+(1110)2+(x10)2+(y10)2=45化简得,x+y=20,(x10)2+(y10)2=18,式平方得:x2+y2+2xy=400,代入化
19、简得:xy=91故答案为:9116关于简单随机抽样,有下列说法:它要求被抽取样本的总体的个数有限;它是从总体中逐个地进行抽取;它是一种不放回抽样;它是一种等可能抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性其中正确的有(请把你认为正确的所有序号都写上)【考点】收集数据的方法【分析】根据简单随机抽样的特点,即可得出正确的结论【解答】解:简单随机抽样中被抽取样本的总体的个数有限,正确;简单随机抽样是从总体中逐个地进行抽取,正确;简单随机抽样是一种不放回抽样,正确;简单随机抽样是一种等可能抽样,即每
20、个个体被抽取的可能性相等,正确故答案:三.解答题(第17题10分,其余各题12分)17一个人带着三只狼和三只羚羊过河,只有一条船,该船可容纳一个人和两只动物没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃羚羊该人如何才能将动物转移过河?请设计算法【考点】设计程序框图解决实际问题【分析】若狼的数量不少于羊的数量,狼会吃羊,那么羊的数量要一直多于狼的数量,先把2只狼带到对岸,然后人自己返回,再一只羊带到对岸,然后把两只狼带回;再把两只羊带到对岸,然后人自己返回,再把3只狼份两次运到对岸即可【解答】解:人和动物同船不用考虑动物的争斗,但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小
21、于羚羊的数量,故在算法的构造中应尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势,具体算法如下:第一步,人带两只狼过河,自己返回第二步,人带一只羚羊过河,带2只狼返回第三步,人带两只羚羊过河,自己返回第四步,人带带2只狼过河,自己返回第五步,人带1只狼过河18设计一个计算1357199的算法,并写出程序,画出程序框图【考点】设计程序框图解决实际问题【分析】由已知中程序的功能为用循环结构计算135199的值,为累乘运算,可令循环变量的初值为1,终值为199,步长为2,由此确定循环前和循环体中各语句,即可得到相应的算法及程序框图,进而写出程序【解答】解:算法步骤如下:第一步:S=1;第二步
22、:i=3;第三步:S=Si;第四步:i=i+2;第五步:判断i是否大于199,若是转到第六步;否则返回第三步,继续执行第三步,第四步,第五步;第六步:输出S;第七步:算法结束相应的程序框图如下图所示:程序如下所示:S=1i=1DO S=S*i i=i+2LOOP UNTIL i199PRINT SEND19已知10b1(2)=a02(3),求数字a,b的值【考点】进位制【分析】把两个数都化为10进制,即可求出结果【解答】解:10b1(2)=120+b21+022+123=9+2ba02(3)=230+031+a32=9a+2,10b1(2)=a02(3),b0,1,a0,1,2,且9+2b=9
23、a+2a=b=120一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本【考点】系统抽样方法;分层抽样方法【分析】分别根据系统抽样和分层抽样的步骤,即可完成从这批产品中抽取一个容量为20的样本【解答】解:(1)系统抽样方法:将200个产品编号1,2,200,再将编号分为20段,每段10个编号,第一段为110号,第20段为191200号在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,第三段取26号,第20段取196号,这样可得到一个容量为20的样本(2)分层抽样方法:因为样本容量
24、与总体的个体数的比为20:200=1:10,所以一、二、三级品中分别抽取的个体数目依次是100,60,40,即10,6,4将一级品的100个产品按00,01,02,99编号,将二级品的60个产品按00,01,02,59编号,将三级品的40个产品按00,01,02,39编号,采用随机数表法,分别抽取10个,6个,4个这样可得容量为20的一个样本21某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05求:(1)高一参赛学生的成绩的众数、中位数(2)高一参
25、赛学生的平均成绩【考点】众数、中位数、平均数;频率分布直方图【分析】(1)用频率分布直方图中最高矩形所在的区间的中点值作为众数的近似值,得出众数,利用中位数的两边频率相等,求出中位数;(2)利用各小组底边的中点值乘以对应频率,再求和,得出数据的平均值【解答】解:(1)用频率分布直方图中最高矩形所在的区间的中点值作为众数的近似值,得众数为65,又第一个小矩形的面积为0.3,设第二个小矩形底边的一部分长为x,则x0.04=0.2,得x=5,中位数为60+5=65;(2)依题意,平均成绩为:550.3+650.4+750.15+850.1+950.05=67,平均成绩约为6722高一三班有男同学27
26、名,女同学21名,在一次语文测验中,男同学的平均分是82分,中位数是75分,女同学的平均分是80分,中位数是80分(1)求这次测验全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的同学至少有多少人?(3)分析男同学的平均分与中位数相差较大的主要原因是什么?【考点】众数、中位数、平均数【分析】(1)分别求出27名男生的总分和21名女生的总分,这两个总分相加后除全班人数48,就得到这次测验全班平均分(2)根据已知条件,利用中位数的性质能估计全班成绩在80分以下(含80分)的同学至少有多少人(3)利用平均分和总位数的概念进行分析【解答】解:(1)由已知得这次测验全班平均分=81.12581.13(2)27名男同学的中位数是75,即至少有14人得分小于或等于75,21女同学的中位数是80,即至少有11人得分小于或等于80,全班至少有25人,得分在80分以下(包括80分),由此估计全班成绩在80分以下(含80分)的同学至少有25人(3)男同学的平均分与中位数差距较大,说明男同学中两极分化现象严重,有一批同学得分较高,同时也有一半左右的同学(至少14人)得分在75分(包括75分)以下2016年8月2日