1、典型例题一例1:已知正方体求证:平面平面 证明:为正方体, 又 平面,故平面同理平面又, 平面平面说明:上述证明是根据判定定理1实现的本题也可根据判定定理2证明,只需连接即可,此法还可以求出这两个平行平面的距离典型例题二例2:如图,已知,求证:证明:过直线作一平面,设, 又 在同一个平面内过同一点有两条直线与直线平行 与重合,即 说明:本题也可以用反证法进行证明典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交已知:如图,求证:与相交证明:在上取一点,过和作平面,由于与有公共点,与有公共点与、都相交设,又、都在平面内,且和交于与相交所以与相交典型例题四例4:已知平面,
2、为夹在,间的异面线段,、分别为、的中点求证: ,证明:连接并延长交于,确定平面,且,所以, ,又, 又 , ,故同理说明:本题还有其它证法,要点是对异面直线的处理典型例题六例6如图,已知矩形的四个顶点在平面上的射影分别为、,且、互不重合,也无三点共线求证:四边形是平行四边形证明:, 不妨设和确定平面 同理 和确定平面 又,且 同理 又又,同理四边形是平行四边形典型例题七例7设直线、,平面、,下列条件能得出的是()A,且,B,且C,且D,且分析:选项A是错误的,因为当时,与可能相交选项B是错误的,理由同A选项C是正确的,因为,所以,又,选项D也是错误的,满足条件的可能与相交答案:C说明:此题极易
3、选A,原因是对平面平行的判定定理掌握不准确所致本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况典型例题八例8设平面平面,平面平面,且、分别与相交于、,求证:平面平面分析:要证明两平面平行,只要设法在平面上找到两条相交直线,或作出相交直线,它们分别与平行(如图)证明:在平面内作直线直线,在平面内作直线直线平面平面,平面,平面,又,平面平面说明:如果在、内分别作,这样就走了弯路,还需证明、在、内,如果直接在、内作、的垂线,就可推出由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得
4、到“面面平行”其核心是要形成应用性质定理的意识,在立体几何证明中非常重要典型例题九例9如图所示,平面平面,点、,点,是、的公垂线,是斜线若,、分别是和的中点,(1)求证:;(2)求的长分析:(1)要证,取的中点,只要证明所在的平面为此证明,即可(2)要求之长,在中,、的长度易知,关键在于证明,从而由勾股定理可以求解证明:(1)连结,设是的中点,分别连结、是的中点,又,同理是的中点,平面平面, (2)分别连结、,又是、的公垂线,是等腰三角形又是的中点,在中,说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略(2)空间线段的长度,
5、一般通过构造三角形、然后利用余弦定理或勾股定理来求解(3)面面平行的性质:面面平行,则线面平行;面面平行,则被第三个平面所截得的交线平行典型例题十例10 如果平面内的两条相交直线与平面所成的角相等,那么这两个平面的位置关系是_分析:按直线和平面的三种位置关系分类予以研究解:设、是平面内两条相交直线(1)若、都在平面内,、与平面所成的角都为,这时与重合,根据教材中规定,此种情况不予考虑(2)若、都与平面相交成等角,且所成角在内;、与有公共点,这时与相交若、都与平面成角,则,与已知矛盾此种情况不可能(3)若、都与平面平行,则、与平面所成的角都为,内有两条直线与平面平行,这时综上,平面、的位置关系是
6、相交或平行典型例题十一例11试证经过平面外一点有且只有一个平面和已知平面平行已知:,求证:过有且只有一个平面分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可证明:在平面内任作两条相交直线和,则由知,点和直线可确定一个平面,点和直线可确定一个平面在平面、内过分别作直线、,故、是两条相交直线,可确定一个平面,同理又,所以过点有一个平面假设过点还有一个平面,则在平面内取一直线,点、直线确定一个平面,由公理2知:,又,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面只有一个所以过平面外一点有且只有一个平面与已知平面平行典型例题十二例12已知点是正
7、三角形所在平面外的一点,且,为上的高,、分别是、的中点,试判断与平面内的位置关系,并给予证明分析1:如图,观察图形,即可判定平面,要证明结论成立,只需证明与平面内的一条直线平行观察图形可以看出:连结与相交于,连结,就是适合题意的直线怎样证明?只需证明是的中点证法1:连结交于点,是的中位线,在中,是的中点,且,为的中点是的中位线,又平面,平面,平面分析2:要证明平面,只需证明平面平面,要证明平面平面,只需证明,而,可由题设直接推出证法2:为的中位线,平面,平面,平面同理:平面,平面平面,又平面,平面典型例题十三例13如图,线段分别交两个平行平面、于、两点,线段分别交、于、两点,线段分别交、于、两
8、点,若,的面积为72,求的面积分析:求的面积,看起来似乎与本节内容无关,事实上,已知的面积,若与的对应边有联系的话,可以利用的面积求出的面积解:平面,平面,又,同理可证:,与相等或互补,即由,得,由,得:,又的面积为72,即的面积为84平方单位说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行典型例题十四例14 在棱长为的正方体中,求异面直线和之间的距离分析:通过前面的学习,我们解决了如下的问题:若和是两条异面直线,则过且平行于的平面必平行于过且平行于的平面我们知道,空间两条异面直线,
9、总分别存在于两个平行平面内因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决具体解法可按如下几步来求:分别经过和找到两个互相平等的平面;作出两个平行平面的公垂线;计算公垂线夹在两个平等平面间的长度解:如图,根据正方体的性质,易证:连结,分别交平面和平面于和因为和分别是平面的垂线和斜线,在平面内,由三垂线定理:,同理:平面,同理可证:平面平面和平面间的距离为线段长度如图所示:在对角面中,为的中点,为的中点和的距离等于两平行平面和的距离为说明:关于异面直线之间的距离的计算,有两种基本的转移方法:转化为线面距设、是两条异面直线,作出经过而和平行的平面,通过计算和的距离,得出和距
10、离,这样又回到点面距离的计算;转化为面面距,设、是两条异面直线,作出经过而和平行的平面,再作出经过和平行的平面,通过计算、之间的距离得出和之间的距离典型例题十五例15正方体棱长为,求异面直线与的距离解法1:(直接法)如图:取的中点,连结、分别交、于、两点,易证:,为异面直线与的公垂线段,易证:小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解但通常寻找公垂线段时,难度较大解法2:(转化法)如图:平面,与的距离等于与平面的距离,在中,作斜边上的高,则长为所求距离,小结:这种解法是将线线距离转化为线面距离解法3:(转化法)如图:平面平面,与的距离等于平面与平面的距离平面,且被平面和平面三等
11、分;所求距离为小结:这种解法是线线距离转化为面面距离解法4:(构造函数法)如图:任取点,作于点,作于点,设,则,且则,故的最小值,即与的距离等于小结:这种解法是恰当的选择未知量,构造一个目标函数,通过求这个函数的最小值来得到二异面直线之间的距离解法5:(体积桥法)如图:当求与的距离转化为求与平面的距离后,设点到平面的距离为,则,即与的距离等于小结:本解法是将线线距离转化为线面距离,再将线面距离转化为锥体化为锥体的高,然后用体积公式求之这种方法在后面将要学到说明:求异面直线距离的方法有:(1)(直接法)当公垂线段能直接作出时,直接求此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键(2)
12、(转化法)把线线距离转化为线面距离,如求异面直线、距离,先作出过且平行于的平面,则与距离就是、距离(线面转化法)也可以转化为过平行的平面和过平行于的平面,两平行平面的距离就是两条异面直线距离(面面转化法)(3)(体积桥法)利用线面距再转化为锥体的高用何种公式来求(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解两条异面直线间距离问题,教科书要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其他解法,要适度接触,以开阔思路,供学有余力的同学探求典型例题十六例16如果,和是夹在平面与之间的两条线段,且,直线与平面所成的角为,求线段长的取值范围解法1:如图所示:作于
13、,连结、,在中,由余弦定理,得:,是与所在的角又,也就等于与所成的角,即,即:,即长的取值范围为解法2:如图:必在过点且与直线垂直的平面内设,则在内,当时,的长最短,且此时而在内,点在上移动,远离垂足时,的长将变大,从而,即长的取值范围是说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习(2)解法1利用余弦定理,采用放缩的方法构造出关于长的不等式,再通过解不等式得到长的范围,此方法以运算为主(3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段是连结异面直线和上两点间
14、的线段,所以是与的公垂线段时,其长最短典型例题十七例17如果两个平面分别平行于第三个平面,那么这两个平面互相平行已知:,求证:分析:本题考查面面平行的判定和性质定理以及逻辑推理能力由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线证明一:如图,假设、不平行,则和相交和至少有一个公共点,即,于是,过平面外一点有两个平面、都和平面平行,这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。
15、证明二:如图,在平面内任取一点,过点作直线与相交,与也相交,与也相交过作两相交平面分别与交于直线、,且与、,交于直线、,同理又,、,证明三:如图,任作直线,说明:证明两个平面平行,可根据定义、应用判定定理来证明典型例题十八例18如图,已知、是异面直线,求证:过和分别存在平面和,使分析:本题考查面面平行及线面垂直的判定和综合推理能力根据前面学过的知识,过异面直线中的一条有且仅有一个平面与另一条平行这样过和分别有平面与另一条线平行那么这两个平面是不是互相平行呢?这两个平面是不是就是我们所要找的和?证明:在直线上任取一点,过点作直线故过和可确定一平面记为,在直线上任取一点过点作直线同理过和可确定一平面,记为,同理,说明:由此题结论可知,两异面直线必定存在于两个互相平行的平面中所以两异面直线间的距离就可转化为两平行平面间的距离(本题易证和的公垂线段垂直于两平行平面)