ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:43.28KB ,
资源ID:752903      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-752903-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广西专用2022年高考数学一轮复习 高考大题专项练五 高考中的解析几何(含解析)新人教A版(文).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广西专用2022年高考数学一轮复习 高考大题专项练五 高考中的解析几何(含解析)新人教A版(文).docx

1、高考大题专项练五高考中的解析几何1.设A,B为曲线C:y=x24上的两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上的一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.解:(1)设A(x1,y1),B(x2,y2),则x1x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率k=y1-y2x1-x2=x1+x24=1.(2)由y=x24,得y=x2.设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x24得

2、x2-4x-4m=0.当=16(m+1)0,即m-1时,x1,2=22m+1.从而|AB|=2|x1-x2|=42(m+1).由题设知|AB|=2|MN|,即42(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.2.(2020全国,文19)已知椭圆C1:x2a2+y2b2=1(ab0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.解:(1)由已知可设C2的方程为y2=4cx,其

3、中c=a2-b2.不妨设A,C在第一象限,由题设得A,B的纵坐标分别为b2a,-b2a;C,D的纵坐标分别为2c,-2c,故|AB|=2b2a,|CD|=4c.由|CD|=43|AB|得4c=8b23a,即3ca=2-2ca2,解得ca=-2(舍去),ca=12.所以C1的离心率为12.(2)由(1)知a=2c,b=3c,故C1:x24c2+y23c2=1.所以C1的四个顶点坐标分别为(2c,0),(-2c,0),(0,3c),(0,-3c),C2的准线为x=-c.由已知得3c+c+c+c=12,即c=2.所以C1的标准方程为x216+y212=1,C2的标准方程为y2=8x.3.设抛物线C:

4、y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:ABM=ABN.答案:(1)解当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).所以直线BM的方程为y=12x+1或y=-12x-1.(2)证明当l与x轴垂直时,AB为MN的垂直平分线,所以ABM=ABN.当l与x轴不垂直时,设l的方程为y=k(x-2)(k0),M(x1,y1),N(x2,y2),则x10,x20.由y=k(x-2),y2=2x,得ky2-2y-4k=0,可知y1+y2=2k,y1y2=-4.直线BM,BN的斜率之和为k

5、BM+kBN=y1x1+2+y2x2+2=x2y1+x1y2+2(y1+y2)(x1+2)(x2+2).将x1=y1k+2,x2=y2k+2及y1+y2,y1y2的表达式代入式分子,可得x2y1+x1y2+2(y1+y2)=2y1y2+4k(y1+y2)k=-8+8k=0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以ABM=ABN.综上,ABM=ABN.4.已知F1,F2是椭圆C:x2a2+y2b2=1(ab0)的两个焦点,P为C上的点,O为坐标原点.(1)若POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围

6、.解:(1)连接PF1.由POF2为等边三角形可知在F1PF2中,F1PF2=90,|PF2|=c,|PF1|=3c,于是2a=|PF1|+|PF2|=(3+1)c,故C的离心率e=ca=3-1.(2)由题意可知,满足条件的点P(x,y)存在,当且仅当12|y|2c=16,yx+cyx-c=-1,x2a2+y2b2=1,即c|y|=16,x2+y2=c2,x2a2+y2b2=1.由及a2=b2+c2得y2=b4c2,又由知y2=162c2,故b=4.由得x2=a2c2(c2-b2),所以c2b2,从而a2=b2+c22b2=32,故a42.当b=4,a42时,存在满足条件的点P.所以b=4,a

7、的取值范围为42,+).5.已知斜率为k的直线l与椭圆C:x24+y23=1交于A,B两点,线段AB的中点为M(1,m)(m0).(1)证明:k-12;(2)设F为C的右焦点,P为C上一点,且FP+FA+FB=0.证明:2|FP|=|FA|+|FB|.答案:证明(1)设A(x1,y1),B(x2,y2),则x124+y123=1,x224+y223=1.两式相减,并由y1-y2x1-x2=k得x1+x24+y1+y23k=0.由题设知x1+x22=1,y1+y22=m,于是k=-34m.由题设得0m32,故k-12.(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-

8、1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m1)的左、右顶点,G为E的上顶点,AGGB=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.答案:(1)解由题设得A(-a,0),B(a,0),G(0,1).则AG=(a,1),GB=(a,-1).由AGGB=8得a2-1=8,即a=3.故E的方程为x29+y2=1.(2)证明设C(x1,y1),D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知-3nb0)的右顶点为A,

9、上顶点为B.已知椭圆的离心率为53,|AB|=13.(1)求椭圆的方程;(2)设直线l:y=kx(kx10,点Q的坐标为(-x1,-y1).由BPM的面积是BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2x1-(-x1),即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组2x+3y=6,y=kx,消去y,可得x2=63k+2.由方程组x29+y24=1,y=kx,消去y,可得x1=69k2+4.由x2=5x1,可得9k2+4=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=-89或k=-12.当k=-89时,x2=-90,不合题意,舍去;当k=-12时

10、,x2=12,x1=125,符合题意.所以,k的值为-12.8.如图,已知椭圆x24+y23=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点.(1)若点G的横坐标为-14,求直线AB的斜率;(2)记GFD的面积为S1,OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.解:(1)依题意可知,直线AB的斜率存在,设其方程为y=k(x+1),将其代入x24+y23=1,整理得(4k2+3)x2+8k2x+4k2-12=0.设A(x1,y1),B(x2,y2),所以x1+x2=-8k24k2+3.故点G的横坐标为x1+x22=-4k24k2+3=-14,解得k=12,即直线AB的斜率为12.(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x轴或y轴垂直.由(1)可得G-4k24k2+3,3k4k2+3.设点D坐标为(xD,0).因为DGAB,所以3k4k2+3-4k24k2+3-xDk=-1,解得xD=-k24k2+3,即D-k24k2+3,0.因为GFDOED,且S1=S2,所以|GD|=|OD|.所以-k24k2+3-4k24k2+32+-3k4k2+32=-k24k2+3,整理得8k2+9=0.因为此方程无解,所以不存在直线AB,使得S1=S2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3