ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:702.50KB ,
资源ID:751818      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-751818-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》山东省枣庄市滕州五中2015届高考数学模拟试卷(理科)(4月份) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》山东省枣庄市滕州五中2015届高考数学模拟试卷(理科)(4月份) WORD版含解析.doc

1、高考资源网() 您身边的高考专家2015年山东省枣庄市滕州五中高考数学模拟试卷(理科)(4月份)一、选择题1设集合U=1,2,3,4,5,A=1,2,3,B=2,3,4,则U(AB)=()A2,3B1,4,5C4,5D1,52已知tR,i为虚数单位,复数z1=3+4i,z2=t+i,且z1z2是实数,则t等于()ABCD3设、都是非零向量,下列四个条件中,一定能使+=成立的是()A =2BC =D40(xex)dx=()A1B1C +D5x、y满足约束条件,若z=yax取得最大值的最优解不唯一,则实数a的值为()A或1B2或C2或1D2或16为了得到函数y=3cos2x的图象,只需把函数y=3

2、sin(2x+)的图象上所有的点()A向右平行移动个单位长度B向右平行移动个单位长度C向左平行移动个单位长度D向左平行移动个单位长度7数列an是正项等比数列,bn是等差数列,且a6=b7,则有()Aa3+a9b4+b10Ba3+a9b4+b10Ca3+a9b4+b10Da3+a9与b4+b10 大小不确定8已知f(x)=2x+3(xR),若|f(x)1|a的必要条件是|x+1|b(a,b0),则a,b之间的关系是()ABCD9如图,已知球O是棱长为1 的正方体ABCDA1B1C1D1的内切球,则平面ACD1截球O的截面面积为()ABCD10现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各

3、4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A232B252C472D484二、填空题:11命题“xR,exx”的否定是12已知函数f(x)=,若函数g(x)=f(x)m有3个零点,则实数m的取值范围是13设n为正整数,计算得,f(4)2,f(16)3,观察上述结果,可推测一般的结论为14双曲线C的左右焦点分别为F1、F2,且F2恰为抛物线y2=4x的焦点设双曲线C与该抛物线的一个交点为A,若AF1F2是以AF1的底边的等腰三角形,则双曲线C的离心率为15函数f(x)=lnx+ax存在与直线2xy=0平行的切线,则实数a的取值范围是三、解答题

4、16在锐角ABC中, =(1)求角A;(2)若a=,求bc的取值范围17经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数f(t)(万人)与时间t(天)的函数关系近似满足,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115|t15|()求该城市的旅游日收益w(t)(万元)与时间t(1t30,tN)的函数关系式;()求该城市旅游日收益的最小值(万元)18如图,棱锥PABCD的底面ABCD是矩形,PA平面ABCD,PA=AD=2,BD=2()求证:BD平面PAC;()求二面角BPDC的余弦值;()在线段PD上是否存在一点Q,使CQ与平面PBD所成的角的正弦值为,若

5、存在,指出点Q的位置,若不存在,说明理由19如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M()设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;()设过点M垂直于PB的直线为m求证:直线m过定点,并求出定点的坐标20已知函数f(x)=ax+xlnx(aR)(1)若函数f(x)在区间e,+)上为增函数,求a的取值范围;(2)当a=1且kz时,不等式k(x1)f(x)在x(1,+)上恒成立,求k的最大值21已知数列an的前n项和为

6、Sn,且a1=4,Sn=nan+2(n2,nN*)(1)求数列an的通项公式;(2)设数列bn满足:b1=4且bn+1=bn2(n1)bn2(nN*),求证:bnan(n2,nN*);(3)求证:(1+)(1+)(1+)2015年山东省枣庄市滕州五中高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题1设集合U=1,2,3,4,5,A=1,2,3,B=2,3,4,则U(AB)=()A2,3B1,4,5C4,5D1,5【考点】交、并、补集的混合运算【专题】计算题【分析】求出集合AB,然后求出它的补集即可【解答】解:集合U=1,2,3,4,5,A=1,2,3,B=2,3,4所以AB=1,

7、2,32,3,4=2,3;U(AB)=1,4,5;故选B【点评】本题是基础题,考查集合的基本运算,常考题型2已知tR,i为虚数单位,复数z1=3+4i,z2=t+i,且z1z2是实数,则t等于()ABCD【考点】复数代数形式的混合运算【专题】数系的扩充和复数【分析】直接利用复数的乘法运算法则,复数是实数,虚部为0求解即可【解答】解:tR,i为虚数单位,复数z1=3+4i,z2=t+i,且z1z2是实数,可得(3+4i)(t+i)=3t4+(4t+3)i,4t+3=0则t=故选:D【点评】本题考查复数的基本知识,复数的概念的应用,考查计算能力3设、都是非零向量,下列四个条件中,一定能使+=成立的

8、是()A =2BC =D【考点】平面向量的基本定理及其意义【专题】平面向量及应用【分析】根据向量共线定理,可得若+=成立,则向量,共线且方向相反,对照各个选项并结合数乘向量的含义,可得本题答案【解答】解:由+=,得若=,即有=,则,共线且方向相反,因此当因此当向量、共线且方向相反时,能使+=成立对照各个选项,可得A项中向量、的方向相同,B项中向量,共线,方向相同或相反,C项中向量、的方向相反,D项中向量、的方向互相垂直故选:C【点评】本题考查了数乘向量的含义与向量共线定理等知识,属于基础题40(xex)dx=()A1B1C +D【考点】微积分基本定理【专题】计算题;导数的概念及应用【分析】0(

9、xex)dx=(x2ex),从而解得【解答】解: 0(xex)dx=(x2ex)=(01)()=;故选C【点评】本题考查了积分的运算,属于基础题5x、y满足约束条件,若z=yax取得最大值的最优解不唯一,则实数a的值为()A或1B2或C2或1D2或1【考点】简单线性规划【专题】不等式的解法及应用【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC)由z=yax得y=ax+z,即直线的截距最大,z也最大若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a0,目标

10、函数y=ax+z的斜率k=a0,要使z=yax取得最大值的最优解不唯一,则直线y=ax+z与直线2xy+2=0平行,此时a=2,若a0,目标函数y=ax+z的斜率k=a0,要使z=yax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y2=0,平行,此时a=1,综上a=1或a=2,故选:D【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法注意要对a进行分类讨论,同时需要弄清楚最优解的定义6为了得到函数y=3cos2x的图象,只需把函数y=3sin(2x+)的图象上所有的点()A向右平行移动个单位长度B向右平行移动个单位长度C向左平行

11、移动个单位长度D向左平行移动个单位长度【考点】函数y=Asin(x+)的图象变换【专题】三角函数的图像与性质【分析】由条件根据诱导公式、函数y=Asin(x+)的图象变换规律,可得结论【解答】解:函数y=3cos2x=3sin(2x+),把函数y=3sin(2x+)的图象上所有的点向左平行移动个单位长度,可得函数y=3sin2(x+)+=3sin(2x+) 的图象,故选:D【点评】本题主要考查诱导公式的应用,函数y=Asin(x+)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题7数列an是正项等比数列,bn是等差数列,且a6=b7,则有()Aa3+a9b4+b10Ba3+a

12、9b4+b10Ca3+a9b4+b10Da3+a9与b4+b10 大小不确定【考点】数列的函数特性【专题】等差数列与等比数列【分析】由于bn是等差数列,可得b4+b10=2b7已知a6=b7,于是b4+b10=2a6由于数列an是正项等比数列,可得a3+a9=2a6即可得出【解答】解:bn是等差数列,b4+b10=2b7,a6=b7,b4+b10=2a6,数列an是正项等比数列,a3+a9=2a6,a3+a9b4+b10故选:B【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题8已知f(x)=2x+3(xR),若|f(x)1|a的必要条件是|x+1|b(a,b0),则a,

13、b之间的关系是()ABCD【考点】绝对值不等式;必要条件、充分条件与充要条件的判断【专题】计算题【分析】化简|f(x)1|a得x化简|x+1|b得b1xb1,由题意可得(, )(b1,b1),故b1,b1,由此求得a,b之间的关系【解答】解:|f(x)1|a即|2x+2|a,即a2x+2a,即x|x+1|b即bx+1b 即b1xb1|f(x)1|a的必要条件是|x+1|b(a,b0),(, )(b1,b1),b1,b1,解得b,故选A【点评】本题主要考查充分条件、必要条件、充要条件的定义,绝对值不等式的解法,属于中档题9如图,已知球O是棱长为1 的正方体ABCDA1B1C1D1的内切球,则平面

14、ACD1截球O的截面面积为()ABCD【考点】截面及其作法【专题】空间位置关系与距离【分析】根据正方体和球的结构特征,判断出平面ACD1是正三角形,求出它的边长,再通过图求出它的内切圆的半径,最后求出内切圆的面积【解答】解:根据题意知,平面ACD1是边长为的正三角形,且球与以点D为公共点的三个面的切点恰为三角形ACD1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,ACD1内切圆的半径是tan30=,则所求的截面圆的面积是=故选:C【点评】本题考查了正方体和它的内接球的几何结构特征,关键是想象出截面图的形状,考查了空间想象能力,数形结合的思想10现有16张不同的卡片,其中红色

15、、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A232B252C472D484【考点】排列、组合及简单计数问题【专题】排列组合【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有=5601672=472故选C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题二、填空题:11命题“xR,exx”的否定是xR,exx【考点】命题的否定【专

16、题】阅读型【分析】本题要求出命题的否定,由于命题是一个特称命题,故其否定是不念旧恶全称命题,特称命题的否定的书写格式书写即可【解答】解:p:“xR,exxp:xR,exx故答案为xR,exx【点评】本题考点是命题的否定,考查命题否定的定义及命题否定的书写格式,属于基本题,在书写命题的否定时要注意全称命题的否定是特称命题,特称命题的书写形式是全称命题,解答此类题时要正确书写12已知函数f(x)=,若函数g(x)=f(x)m有3个零点,则实数m的取值范围是(0,1)【考点】函数的零点【专题】数形结合法【分析】先把原函数转化为函数f(x)=,再作出其图象,然后结合图象进行求解【解答】解:函数f(x)

17、=,得到图象为:又函数g(x)=f(x)m有3个零点,知f(x)=m有三个零点,则实数m的取值范围是(0,1)故答案为:(0,1)【点评】本题考查函数的零点及其应用,解题时要注意数形结合思想的合理运用,13设n为正整数,计算得,f(4)2,f(16)3,观察上述结果,可推测一般的结论为f(2n)(nN*)【考点】归纳推理【专题】探究型【分析】根据已知中的等式:,f(4)2,f(16)3,我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案【解答】解:观察已知中等式:得,f(4)2,f(16)3,则f(2n)(nN*)故答案为:f(2n)(nN*)【点评】归纳推理的一般步骤是

18、:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)14双曲线C的左右焦点分别为F1、F2,且F2恰为抛物线y2=4x的焦点设双曲线C与该抛物线的一个交点为A,若AF1F2是以AF1的底边的等腰三角形,则双曲线C的离心率为1+【考点】双曲线的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】求出抛物线的焦点坐标,即可得到双曲线C的值,利用抛物线与双曲线的交点以及AF1F2是以AF1为底边的等腰三角形,结合双曲线a、b、c关系求出a的值,然后求出离心率【解答】解:抛物线的焦点坐标(1,0),所以双曲线中,c=1,因为双曲线C与该抛物线的一

19、个交点为A,若AF1F2是以AF1为底边的等腰三角形,由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以,c2=a2+b2=1,解得a=1,双曲线的离心率e=1+故答案为:1+【点评】本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力15函数f(x)=lnx+ax存在与直线2xy=0平行的切线,则实数a的取值范围是(,2)【考点】利用导数研究曲线上某点切线方程【专题】导数的综合应用【分析】函数f(x)=lnx+ax存在与直线2xy=0平行的切线方程f(x)=在区间x(0,+)上有解,并且去掉直线2xy=0与曲线f(x)相切的情况,解出即可【解答】解:,(x0)函数f(x)

20、=lnx+ax存在与直线2xy=0平行的切线,方程在区间x(0,+)上有解即在区间x(0,+)上有解a2若直线2xy=0与曲线f(x)=lnx+ax相切,设切点为(x0,2x0)则,解得x0=e此时综上可知:实数a的取值范围是(,2)故答案为:(,2)【点评】本题考查了导数的几何意义、切线的斜率、相互平行的直线之间的斜率关系、恒成立问题的等价转化等基础知识与基本技能方法,属于中档题三、解答题16在锐角ABC中, =(1)求角A;(2)若a=,求bc的取值范围【考点】正弦定理;余弦定理【专题】计算题;三角函数的求值;解三角形【分析】(1)由余弦定理可得:a2+c2b2=2accosB,代入已知整

21、理可得sin2A=1,从而可求A的值(2)由(1)及正弦定理可得bc=,根据已知求得角的范围,即可求得bc的取值范围【解答】解:(1)由余弦定理可得:a2+c2b2=2accosB,sin2A=1且,(2),又,b=2sinB,c=2sinC,bc=2sin(135C)2sinC=,【点评】本题主要考查了正弦定理、余弦定理在解三角形中的应用,属于中档题17经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数f(t)(万人)与时间t(天)的函数关系近似满足,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115|t15|()求该城市的旅游日收益w(t)(万元)与时间t

22、(1t30,tN)的函数关系式;()求该城市旅游日收益的最小值(万元)【考点】根据实际问题选择函数类型;基本不等式在最值问题中的应用【专题】应用题;分类讨论【分析】()根据该城市的旅游日收益=日旅游人数人均消费的钱数得w(t)与t的解析式;()因为w(t)中有一个绝对值,讨论t的取值,1t15和15t30两种情况化简得w(t)为分段函数,第一段运用基本不等式求出最值,第二段是一个递减的一次函数求出最值比较即可【解答】解:()由题意得,;()因为;当1t15时, 当且仅当,即t=5时取等号当15t30时,可证w(t)在t15,30上单调递减,所以当t=30时,w(t)取最小值为由于,所以该城市旅

23、游日收益的最小值为万元【点评】考查学生根据实际情况选择函数类型的能力,以及基本不等式在求函数最值中的应用能力18如图,棱锥PABCD的底面ABCD是矩形,PA平面ABCD,PA=AD=2,BD=2()求证:BD平面PAC;()求二面角BPDC的余弦值;()在线段PD上是否存在一点Q,使CQ与平面PBD所成的角的正弦值为,若存在,指出点Q的位置,若不存在,说明理由【考点】与二面角有关的立体几何综合题;直线与平面垂直的判定【专题】空间位置关系与距离【分析】()由已知条件推导出BDAC,BDPA,由此能证明BD平面PAC()建立空间直角坐标系,利用向量法能求出二面角BPDC的余弦值(III)设,由C

24、Q与平面PBD所成的角的正弦值为,利用向量法能求出线段PD上存在一点Q,使CQ与平面PBD所成的角的正弦值为,且【解答】解:()证明:在RtBAD中,AD=2,BD=,AB=2,ABCD为正方形,BDACPA平面ABCD,BDPAAC平面PAC,PA平面PAC,ACPA=A,BD平面PAC()解:如图建立空间直角坐标系,则B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),设平面PCD的法向量,则,取y=1,得,高平面PBD的法向量,则,取x1=1,得,二面角BPDC的余弦值(III)解:Q在DP上,设,又,Q(0,22,2),由()可知平面PBD的法向量为,设CQ与平面P

25、BD所成的角为,则有:CQ与平面PBD所成的角的正弦值为,解得,01,线段PD上存在一点Q,使CQ与平面PBD所成的角的正弦值为,且【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,考查线段上满足条件的点是否存在的判断和求法,解题时要认真审题,注意向量法的合理运用19如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M()设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;()设过点M垂直于PB的直线为m求证:直线m过定

26、点,并求出定点的坐标【考点】直线与圆锥曲线的关系;直线的一般式方程与直线的垂直关系;椭圆的标准方程【专题】圆锥曲线的定义、性质与方程【分析】(1)利用椭圆的标准方程及参数a,b,c之间的关系即可求出;(2)(i)利用斜率的计算公式、三点共线的斜率性质、点在椭圆上的性质即可证明;(ii)利用直线的点斜式及其(i)的有关结论即可证明【解答】解:(1)由题意得2c=2,c=1,又,a2=b2+1消去a可得,2b45b23=0,解得b2=3或(舍去),则a2=4,椭圆E的方程为(2)()设P(x1,y1)(y10),M(2,y0),则,A,P,M三点共线,P(x1,y1)在椭圆上,故为定值()直线BP

27、的斜率为,直线m的斜率为,则直线m的方程为, =,即所以直线m过定点(1,0)【点评】熟练掌握椭圆的定义及其性质、斜率的计算公式及其直线的点斜式是解题的关键善于利用已经证明过的结论是解题的技巧20已知函数f(x)=ax+xlnx(aR)(1)若函数f(x)在区间e,+)上为增函数,求a的取值范围;(2)当a=1且kz时,不等式k(x1)f(x)在x(1,+)上恒成立,求k的最大值【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值【专题】综合题;导数的概念及应用【分析】(1)易求f(x)=a+1+lnx,依题意知,当xe时,a+1+lnx0恒成立,即xe时,a(1lnx)max,从而

28、可得a的取值范围;(2)依题意,对任意x1恒成立,令则,再令h(x)=xlnx2(x1),易知h(x)在(1,+)上单增,从而可求得g(x)min=x0(3,4),而kz,从而可得k的最大值【解答】解:(1)f(x)=ax+xlnx,f(x)=a+1+lnx,又函数f(x)在区间e,+)上为增函数,当xe时,a+1+lnx0恒成立,a(1lnx)max=1lne=2,即a的取值范围为2,+);(2)当x1时,x10,故不等式k(x1)f(x)k,即对任意x1恒成立令则,令h(x)=xlnx2(x1),则在(1,+)上单增h(3)=1ln30,h(4)=2ln40,存在x0(3,4)使h(x0)

29、=0,即当1xx0时,h(x)0,即g(x)0,当xx0时,h(x)0,即g(x)0,g(x)在(1,x0)上单减,在(x0,+)上单增令h(x0)=x0lnx02=0,即lnx0=x02, =x0(3,4),kg(x)min=x0且kZ,即kmax=3【点评】本题考查利用导数研究函数的单调性及利用导数求闭区间上函数的最值,着重考查等价转化思想与函数恒成立问题,属于难题21已知数列an的前n项和为Sn,且a1=4,Sn=nan+2(n2,nN*)(1)求数列an的通项公式;(2)设数列bn满足:b1=4且bn+1=bn2(n1)bn2(nN*),求证:bnan(n2,nN*);(3)求证:(1

30、+)(1+)(1+)【考点】不等式的证明【专题】点列、递归数列与数学归纳法;不等式的解法及应用【分析】(1)运用下标变为n1相减的方法,结合数列的通项和前n项和的关系,即可求得通项;(2)运用数学归纳法证明,注意两个解题步骤,特别是假设的运用;(3)设f(x)=ln(1+x)x,通过导数判断单调性,可得ln(1+x)x,又n2时,=,结合裂项相消和累加法,及对数的运算性质即可得证【解答】(1)解:Sn=nan+2(n2,nN*)Sn1=(n1)an1+2(n3,nN*)得an=nan(n1)an1(n1),即有anan1=1(n3,nN*)中令n=2,a1+a2=2a2+21,a2=3,综上a

31、n=;(2)证明:当n=2时,b2=b122=143=a2,不等式成立;假设n=k(k2)时,不等式bkk+1(k2时ak=k+1),那么当n=k+1时,bk+1=bk2(k1)bk2=bk(bkk+1)2bk(k+1k+1)2=2bk22(k+1)2(由归设)=2kk+2n=k+1命题真;综合知当n2时,bnan(3)证明:设f(x)=ln(1+x)x,f(x)=1=0,f(x)在(0,+)递减,则f(x)f(0)=0,即ln(1+x)x,又n2时,=,则ln(1+)=,即有ln(1+)+ln(1+)+ln(1+)()+()+()=则有(1+)(1+)(1+)【点评】本题考查数列的通项公式的求法,同时考查数学归纳法证明数列不等式的方法,以及构造函数由函数的单调性,结合裂项和累加法证明不等式的方法,属于中档题和易错题高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3