收藏 分享(赏)

1.2《充分条件与必要条件》教案(新人教选修1-1).doc

上传人:高**** 文档编号:7516 上传时间:2024-05-23 格式:DOC 页数:5 大小:345.50KB
下载 相关 举报
1.2《充分条件与必要条件》教案(新人教选修1-1).doc_第1页
第1页 / 共5页
1.2《充分条件与必要条件》教案(新人教选修1-1).doc_第2页
第2页 / 共5页
1.2《充分条件与必要条件》教案(新人教选修1-1).doc_第3页
第3页 / 共5页
1.2《充分条件与必要条件》教案(新人教选修1-1).doc_第4页
第4页 / 共5页
1.2《充分条件与必要条件》教案(新人教选修1-1).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.2 充分条件和必要条件(1)【教学目标】1从不同角度帮助学生理解充分条件、必要条件与充要条件的意义;2结合具体命题,初步认识命题条件的充分性、必要性的判断方法;3培养学生的抽象概括和逻辑推理的意识【教学重点】构建充分条件、必要条件的数学意义;【教学难点】命题条件的充分性、必要性的判断【教学过程】一、复习回顾1命题:可以判断真假的语句,可写成:若p则q2四种命题及相互关系:3请判断下列命题的真假:(1)若,则; (2)若,则;(3)若,则; (4)若,则二、讲授新课1.推断符号“”的含义:一般地,如果“若,则”为真, 即如果成立,那么一定成立,记作:“”;如果“若,则”为假, 即如果成立,那

2、么不一定成立,记作:“”.用推断符号“和”写出下列命题:若,则;若,则;2充分条件与必要条件一般地,如果,那么称p是q的充分条件;同时称q是p的必要条件如何理解充分条件与必要条件中的“充分”和“必要”呢?由上述定义知“”表示有必有,所以p是q的充分条件,这点容易理解但同时说q是p的必要条件是为什么呢?q是p的必要条件说明没有就没有,是成立的必不可少的条件,但有未必一定有. 充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的它符合上述的“若p则q”为真(即)的形式“有之必成立,无之未必不成立”必要性:必要就是必须,必不可少它满足上述的“若非q则非p”为真(即)的形式“有

3、之未必成立,无之必不成立”命题按条件和结论的充分性、必要性可分为四类:(1)充分必要条件(充要条件),即 且;(2)充分不必要条件,即且;(3)必要不充分条件,即且;(4)既不充分又不必要条件,即且3从不同角度理解充分条件、必要条件的意义(1)借助“子集概念”理解充分条件与必要条件。设为两个集合,集合是指。这就是说,“”是“”的充分条件,“”是“ ”的必要条件。对于真命题“若p则q”,即,若把p看做集合,把q看做集合,“”相当于“”。(2)借助“电路图”理解充分条件与必要条件。设“开关闭合”为条件,“灯泡亮”为结论,可用图1、图2来表示是的充分条件,是的必要条件。B3AC图2CAB图4CAB图

4、1图3B3A(3)回答下列问题中的条件与结论之间的关系:若,则;若,则;若两三角形全等,则两三角形的面积相等三、例题例1:指出下列命题中,p是q的什么条件p:,q:;p:两直线平行,q:内错角相等;p:,q:;p:四边形的四条边相等,q:四边形是正方形 四、课堂练习课本P8 练习1、2、3五、课堂小结1充分条件的意义;2必要条件的意义六、课后作业:1.2 充分条件和必要条件(2)教学目标:1进一步理解并掌握充分条件、必要条件、充要条件的概念;2掌握判断命题的条件的充要性的方法;教学重点、难点:理解充要条件的意义,掌握命题条件的充要性判断教学过程:一、复习回顾一般地,如果已知,那么我们就说p是q

5、成立的充分条件,q是p的必要条件“”是“”的 充分不必要 条件若a、b都是实数,从;中选出使a、b都不为0的充分条件是 二、例题分析条件充要性的判定结果有四种,判定的方法很多,但针对各种具体情况,应采取不同的策略,灵活判断下面我们来看几个充要性的判断及其证明的例题1要注意转换命题判定,培养思维的灵活性例1:已知p:;q:x、y不都是,p是q的什么条件?分析:要考虑p是q的什么条件,就是判断“若p则q”及“若q则p”的真假性从正面很难判断是,我们从它们的逆否命题来判断其真假性“若p则q”的逆否命题是“若x、y都是,则”真的“若q则p”的逆否命题是“若,则x、y都是”假的故p是q的充分不必要条件注

6、:当一个命题很难判断其真假性时,我们可以从其逆否命题来着手练习:已知p:或;q:或,则是的什么条件?方法一: 显然是的的充分不必要条件方法二:要考虑是的什么条件,就是判断“若则”及“若则”的真假性“若则”等价于“若q则p”真的“若则”等价于“若p则q”假的故是的的充分不必要条件2要注意充要条件的传递性,培养思维的敏捷性例2:若M是N的充分不必要条件,N是P的充要条件,Q是P的必要不充分条件,则M是Q的什么条件?分析:命题的充分必要性具有传递性 显然M是Q的充分不必要条件3充要性的求解是一种等价的转化例3:求关于x的一元二次不等式于一切实数x都成立的充要条件分析:求一个问题的充要条件,就是把这个

7、问题进行等价转化由题可知等价于4充要性的证明,关键是理清题意,特别要认清条件与结论分别是什么例4:证明:对于x、yR,是的必要不充分条件分析:要证明必要不充分条件,就是要证明两个,一个是必要条件,另一个是不充分条件必要性:对于x、yR,如果则, 即故是的必要条件不充分性:对于x、yR,如果,如,此时故是的不充分条件综上所述:对于x、yR,是的必要不充分条件例5:p:;q:若是的必要不充分条件,求实数m的取值范围解:由于是的必要不充分条件,则p是q的充分不必要条件于是有三、练习:1若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,那么:命题丁是命题甲的什么条件(必要不充分的条件)2对于实数x、y,判断“x+y8”是“x2或y6”的什么条件(充分不必要条件)3已知,求证:的充要条件是:.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3