1、基础训练1点A(3,6)在矩阵对应的变换作用下得到的点的坐标是_2设,则它表示的方程组为_3设矩阵A,矩阵A所确定的变换将点P(x,y)变换成点Q,则Q点的坐标为_ _4设OAB的三个点坐标为O(0,0),A(A1,A2),B(B1,B2),在矩阵M对应的变换下作用后形成OAB,则OAB与OAB的面积之比为_重点讲解1线性变换与二阶矩阵 在平面直角坐标系xOy中,由(其中a,b,c,d是常数)构成的变换称为线性变换由四个数a,b,c, d排成的正方形数表称为_,其中a,b,c,d称为矩阵的_,矩阵通常用大写字母A,B,C,或(aij)表示(其中i,j分别为元素aij所在的行和列)2矩阵的乘法行
2、矩阵a11a12与列矩阵的乘法规则为a11a12a11b11a12b21,二阶矩阵与列矩阵的乘法规则为.矩阵乘法满足结合律,不满足交换律和消去律3几种常见的线性变换(1)恒等变换矩阵M;(2)旋转变换R对应的矩阵是M_;(3)反射变换要看关于哪条直线对称例如若关于x轴对称,则变换对应矩阵为M1;若关于y轴对称,则变换对应矩阵为M2_;若关于坐标原点对称,则变换对应矩阵M3_;(4)伸压变换对应的二阶矩阵M,表示将每个点的横坐标变为原来的_倍,纵坐标变为原来的_倍,k1,k2均为非零常数;(5)投影变换要看投影在什么直线上,例如关于x轴的投影变换的矩阵为M_; (6)切变变换要看沿什么方向平移,
3、若沿x轴平移|ky|个单位,则对应矩阵M_,若沿y轴平移|kx|个单位,则对应矩阵M.(其中k为非零常数)4线性变换的基本性质设向量,规定实数与向量的乘积_;设向量,规定向量与的和_.(1)设M是一个二阶矩阵,、是平面上的任意两个向量,是一个任意实数,则M()_,M()_.(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点)典题拓展例1试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换(1),方程为y2x2;(2),点A(2,5);(3),曲线方程为x2y24.变式1 将点(2,4)先经过矩阵变换后,再绕原点逆时针旋转90角所得的点坐标为_例2 验证下列等式,并从几
4、何变换的角度给予解释 :.变式2 已知矩阵M和N,求证: MNNM.来源:学科网ZXXK 例3已知A,B,试求AB,并对其几何意义给予解释来源:学科网巩固迁移1矩阵(左)乘向量的法则是_2在某个旋转变换中,顺时针旋转所对应的变换矩阵为_3直线2xy10经矩阵M的变换后得到的直线方程为_4设a,bR,若矩阵A将直线l:xy10变为直线xy20,则a_,b_.5已知A,B,C.则AB_,AC_.6曲线ysin x在矩阵MN变换下的函数解析式为_(其中M,N.)7在直角坐标系中,OAB的顶点坐标O(0,0),A(2, 0),B(1,),OAB在矩阵MN的作用下变换所得的图形的面积为_(其中矩阵M,N)8已知二阶矩阵M满足M,M,则M2_.9已知矩阵A,向量.求向量,使得A2.10在平面直角坐标系xOy中,已知点A(0,0),B(2,0),C(2,1)设k为非零实数,矩阵M,N,点A、B、C在矩阵MN对应的变换下得到的点分别为A1、B1、C1,A1B1C1的面积是ABC的面积的2倍,求k的值来源:11已知矩阵M,N,且MN 求实数a,b,c,d的值; 求直线y3x在矩阵M所对应的线性变换作用下的象的方程