ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:28.21KB ,
资源ID:750423      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-750423-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广西专用2022年高考数学一轮复习 高考大题专项练三 高考中的数列(含解析)新人教A版(理).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广西专用2022年高考数学一轮复习 高考大题专项练三 高考中的数列(含解析)新人教A版(理).docx

1、高考大题专项练三高考中的数列1.在等比数列an中,a1=1,a5=4a3.(1)求an的通项公式;(2)记Sn为an的前n项和,若Sm=63,求m.解:(1)设an的公比为q,由题设得an=qn-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-2)n-1或an=2n-1.(2)若an=(-2)n-1,则Sn=1-(-2)n3.由Sm=63得(-2)m=-188,此方程没有正整数解.若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6.2.已知等差数列an的前n项和为Sn,a3=5,S5=3S3-2.(1)求an的通项公式;(2)设b

2、n=2an,求数列bn的前n项和Tn.解:(1)设等差数列an的公差为d,a3=5,S5=3S3-2,a3=a1+2d=5,5a1+10d=3(3a1+3d)-2,a1=1,d=2,an=2n-1.(2)bn=2an=22n-1,bn+1bn=22(n+1)-122n-1=22n+122n-1=22=4,b1=2.数列bn是等比数列,公比为4,首项为2.Tn=2(1-4n)1-4=23(4n-1).3.已知数列an和bn满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.(1)证明:an+bn是等比数列,an-bn是等差数列;(2)求an和bn的通项公式.答案:

3、(1)证明由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=12(an+bn).又因为a1+b1=1,所以an+bn是首项为1,公比为12的等比数列.由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.又因为a1-b1=1,所以an-bn是首项为1,公差为2的等差数列.(2)解由(1)知,an+bn=12n-1,an-bn=2n-1,所以an=12(an+bn)+(an-bn)=12n+n-12,bn=12(an+bn)-(an-bn)=12n-n+12.4.设an是等差数列,其前n项和为Sn(nN*);bn是等比数列,公比大于

4、0,其前n项和为Tn(nN*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求Sn和Tn;(2)若Sn+(T1+T2+Tn)=an+4bn,求正整数n的值.解:(1)设等比数列bn的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.因为q0,可得q=2,故bn=2n-1.所以,Tn=1-2n1-2=2n-1.设等差数列an的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故an=n.所以,Sn=n(n+1)2.(2)由(1),有T1+T2+Tn=(21+22+2n)-n=2(1-2n

5、)1-2-n=2n+1-n-2.由Sn+(T1+T2+Tn)=an+4bn可得,n(n+1)2+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以,n的值为4.5.已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列bn满足b1=1,数列(bn+1-bn)an的前n项和为2n2+n.(1)求q的值;(2)求数列bn的通项公式.解:(1)由a4+2是a3,a5的等差中项,得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20,得8q+1q=20,解得q=2或q=12,因为q1

6、,所以q=2.(2)设cn=(bn+1-bn)an,数列cn前n项和为Sn,由Sn=2n2+n,cn=S1,n=1,Sn-Sn-1,n2,解得cn=4n-1.由(1)可知an=2n-1,所以bn+1-bn=(4n-1)12n-1.故bn-bn-1=(4n-5)12n-2,n2,bn-b1=(bn-bn-1)+(bn-1-bn-2)+(b3-b2)+(b2-b1)=(4n-5)12n-2+(4n-9)12n-3+712+3.设Tn=3+712+11122+(4n-5)12n-2,n2,12Tn=312+7122+(4n-9)12n-2+(4n-5)12n-1,所以12Tn=3+412+4122+

7、412n-2-(4n-5)12n-1,因此Tn=14-(4n+3)12n-2,n2,又b1=1,所以bn=15-(4n+3)12n-2.6.设Sn为等差数列an的前n项和,已知S3=a7,a8-2a3=3.(1)求an;(2)设bn=1Sn,数列bn的前n项和为Tn,求证:Tn34-1n+1(nN*).答案:(1)解设等差数列an的公差为d,由题意,得3a1+3d=a1+6d,(a1+7d)-2(a1+2d)=3,解得a1=3,d=2.故an=a1+(n-1)d=2n+1.(2)证明a1=3,d=2,Sn=na1+n(n-1)2d=n(n+2).bn=1n(n+2)=121n-1n+2.Tn=

8、b1+b2+bn-1+bn=121-13+12-14+1n-1-1n+1+1n-1n+2=121+12-1n+1-1n+2121+12-1n+1-1n+1=34-1n+1,故Tn34-1n+1.7.已知正项数列an的首项a1=1,前n项和Sn满足an=Sn+Sn-1(n2).(1)求证:Sn为等差数列,并求数列an的通项公式;(2)记数列1anan+1的前n项和为Tn,若对任意的nN*,不等式4Tna2-a恒成立,求实数a的取值范围.答案:(1)证明因为an=Sn+Sn-1,n2,所以Sn-Sn-1=Sn+Sn-1,即Sn-Sn-1=1,所以数列Sn是首项为S1=a1=1,公差为1的等差数列,

9、得Sn=n,所以an=Sn+Sn-1=n+(n-1)=2n-1(n2),当n=1时,a1=1也适合,所以an=2n-1.(2)解因为1anan+1=1(2n-1)(2n+1)=1212n-1-12n+1,所以Tn=121-13+13-15+12n-1-12n+1=121-12n+1.所以Tn12.要使不等式4Tna2-a恒成立,只需2a2-a恒成立,解得a-1或a2,故实数a的取值范围是(-,-12,+).8.已知数列an是公比为12的等比数列,其前n项和为Sn,且1-a2是a1与1+a3的等比中项,数列bn是等差数列,其前n项和Tn满足Tn=nbn+1(为常数,且1),其中b1=8.(1)求

10、数列an的通项公式及的值;(2)比较1T1+1T2+1T3+1Tn与12Sn的大小.解:(1)由题意,得(1-a2)2=a1(a3+1),即1-12a12=a114a1+1,解得a1=12.故an=12n.设等差数列bn的公差为d,又T1=b2,T2=2b3,即8=(8+d),16+d=2(8+2d),解得=12,d=8或=1,d=0(舍去),故=12.(2)由(1)知Sn=1-12n,则12Sn=12-12n+114.由(1)知Tn=12nbn+1,当n=1时,T1=b1=12b2,即b2=2b1=16,故公差d=b2-b1=8,则bn=8n,又Tn=nbn+1,故Tn=4n2+4n,即1Tn=14n(n+1)=141n-1n+1.因此,1T1+1T2+1Tn=141-12+12-13+1n-1n+1=141-1n+114.由可知1T1+1T2+1Tn12Sn.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3