1、考点规范练57坐标系与参数方程基础巩固1.在平面直角坐标系xOy中,已知直线l的参数方程为x=1+12t,y=32t(t为参数),椭圆C的参数方程为x=cos,y=2sin(为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.解:椭圆C的普通方程为x2+y24=1.将直线l的参数方程x=1+12t,y=32t(t为参数)代入x2+y24=1,得1+12t2+32t24=1,即7t2+16t=0,解得t1=0,t2=-167.所以AB=|t1-t2|=167.2.在平面直角坐标系中,已知点A(10,0),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线M的参数方程为x=5+5co
2、s,y=5sin(0,为参数),曲线N的极坐标方程为(1-cos )=2.(1)求曲线M的极坐标方程;(2)设曲线M与曲线N的交点为P,Q,求|OP|+|OQ|的值.解:(1)因为曲线M的参数方程为x=5+5cos,y=5sin(0,为参数),所以曲线M是以(5,0)为圆心,5为半径的圆的上半部分.所以曲线M的极坐标方程为=10cos0,2.(2)设P(1,1),Q(2,2).由(1-cos)=2,=10cos,得2-10+20=0.所以1+2=10.所以|OP|+|OQ|的值是10.3.(2020湖北武汉模拟)已知曲线C1的参数方程为x=1+t21-t2,y=2t1-t2(t为参数),曲线C
3、2的参数方程为x=2+2cos,y=2sin(d为参数),以直角坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1和曲线C2的极坐标方程;(2)射线=6与曲线C1和曲线C2分别交于M,N,已知点Q(4,0),求QMN的面积.解:(1)由曲线C1的参数方程得x2-y2=1+t21-t22-2t1-t22=1+t4-2t2(1-t2)2=(1-t2)2(1-t2)2=1,即曲线C1的直角坐标系方程为x2-y2=1(x-1).极坐标方程为2cos2=1().由曲线C2的参数方程可得(x-2)2+y2=(2cos)2+(2sin)2=4,化为极坐标方程为(cos-2)2+2sin2=4
4、,即=4cos.(2)设M1,6,N2,6,可得|MN|=|1-2|=4cos6-1cos26=23-2,dQMN=sin64=2,SQMN=122(23-2)=23-2.4.在平面直角坐标系xOy中,曲线C的参数方程为x=2cos,y=4sin(为参数),直线l的参数方程为x=1+tcos,y=2+tsin(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解:(1)曲线C的直角坐标方程为x24+y216=1.当cos0时,l的直角坐标方程为y=tanx+2-tan,当cos=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C
5、的直角坐标方程,整理得关于t的方程(1+3cos2)t2+4(2cos+sin)t-8=0.因为曲线C截直线l所得线段的中点(1,2)在C内,所以有两个解,设为t1,t2,则t1+t2=0.又由得t1+t2=-4(2cos+sin)1+3cos2,故2cos+sin=0,于是直线l的斜率k=tan=-2.5.(2020全国,文22)在平面直角坐标系xOy中,曲线C的参数方程为x=2-t-t2,y=2-3t+t2(t为参数,且t1),C与坐标轴交于A,B两点.(1)求|AB|;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.解:(1)因为t1,由2-t-t2=0得t
6、=-2,所以C与y轴的交点为(0,12);由2-3t+t2=0得t=2,所以C与x轴的交点为(-4,0).故|AB|=410.(2)由(1)可知,直线AB的直角坐标方程为x-4+y12=1,将x=cos,y=sin代入,得直线AB的极坐标方程为3cos-sin+12=0.能力提升6.已知直线C1:x=1+tcos,y=tsin(t为参数),圆C2:x=cos,y=sin(为参数).(1)当=3时,求C1被C2截得的线段的长;(2)过坐标原点O作C1的垂线,垂足为A,当变化时,求A点轨迹的参数方程,并指出它是什么曲线.解:(1)当=3时,C1的普通方程为y=3(x-1),C2的普通方程为x2+y
7、2=1.联立方程组y=3(x-1),x2+y2=1,解得C1与C2的交点坐标为(1,0)与12,-32.故C1被C2截得的线段的长为1-122+0+322=1.(2)将C1的参数方程代入C2的普通方程得t2+2tcos=0,设直线C1与圆C2交于M,N两点,M,N两点对应的参数分别为t1,t2,则点A对应的参数t=t1+t22=-cos,故点A的坐标为(sin2,-cossin).故当变化时,A点轨迹的参数方程为x=sin2,y=-sincos(为参数).因此,A点轨迹的普通方程为x-122+y2=14.故A点的轨迹是以12,0为圆心,半径为12的圆.7.(2020山西运城模拟)在平面直角坐标
8、系xOy中,曲线C的参数方程为x=1+tcos,y=-3+tsin(或t为参数).以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为(cos +3sin )=1.(1)当t为参数,=56时,判断曲线C与直线l的位置关系;(2)当为参数,t=2时,直线l与曲线C交于A,B两点,设P(1,0),求1|PA|+1|PB|的值.解:(1)当t为参数,=56,曲线C的参数方程为x=1+tcos56,y=-3+tsin56,化简得x=1-32t,y=-3+12t,消掉参数得y=-33x-233.因为直线l的极坐标方程为(cos+3sin)=1,化为直角坐标方程为y=-33x+33,曲线C与直
9、线l斜率相等,截距不相等,所以它们平行.(2)当为参数,t=2时,曲线C的参数方程为x=1+2cos,y=-3+2sin,化为普通方程得(x-1)2+(y+3)=4,由(1)知直线l的斜率为-33,直线l过点P(1,0),所以直线l的倾斜角为150,所以直线l的参数方程为x=1+tcos150,y=tsin150(t为参数),即x=1-33t,y=12t(t为参数).联立直线l的参数方程与曲线C的普通方程得t2+3t-1=0.设A,B两点对应的参数分别为t1,t2,所以t1+t2=-3,t1t2=-1,所以1|PA|+1|PB|=1|t1|+1|t2|=|t2|+|t1|t1t2|=|t1-t
10、2|t1t2|=(t1+t2)2-4t1t2|t1t2|=7.高考预测8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为sin2=acos (a0),过点P(-2,-4)的直线l的参数方程为x=-2+22t,y=-4+22t(t为参数),直线l与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|PA|PB|=|AB|2,求a的值.解:(1)sin2=acos(a0),2sin2=acos(a0),即y2=ax(a0).直线l的参数方程消去参数t,得普通方程为y=x-2.(2)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a0)中,得t2-2(a+8)t+4(a+8)=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=2(a+8),t1t2=4(a+8).|PA|PB|=|AB|2,t1t2=(t1-t2)2.(t1+t2)2=(t1-t2)2+4t1t2=5t1t2,即2(8+a)2=20(8+a),解得a=2或a=-8(不合题意,应舍去),a的值为2.