1、绝密启用前昆明市五华区新世纪高级中学2012届高三第一次模拟考试题文科数学考试时间:2011年8月28日上午8:00-10:00,共120分钟 命题人:刘忠题号一二三总分得分注意事项: 1答题前,考生务必用黑色碳素笔将自己的姓名、考号、考场号、座位号等在答题卡上填写清楚,并认真核准。 2每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案的标号。在试题卷上作答无效。参考公式:如果事件A、B互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么其中R表示球的半径P(AB)=P(A)P(B) 球的体积公式如果事件A
2、在一次试验中发生的概率是 P,那么n次独立重复试验中恰好发生k次的概率 其中R表示球的半径 一、选择题:(每小题5分,满分60分) 1设,函数的定义域为,则=A BCD 2为虚数单位,复平面内表示复数的点在A第一象限 B第二象限 C第三象限 D第四象限3命题“”的否定是 A BC D 4双曲线的离心率为A. B. C. D. 5. 若是第四象限角,且,则A B C D6. 已知等比数列的公比为正数,且,则A B C D27. 阅读下面的算法框图,输出的结果的值为 A B C D8已知的最小值是A2B2 C4 D2212主视图侧视图俯视图29已知空间几何体的三视图如图所示,根据图中标出的尺寸(单
3、位:cm)可得该几何体的体积为A B C D 10若,则A B C D 11. 已知函数,若是函数的零点,且,则的值A恒为正值 B. 等于0 C. 恒为负值 D. 不大于012已知点M在曲线上,点N在不等式组所表示的平面区域内,那么|MN|的最小值是A B2 C D1二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若垂直,则的值为 。14. 设抛物线的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线的斜率的取值范围是 。ABADACA15. 如图中,点在边上且,则长度为 。16. 在三棱锥P-ABC中,ABC是边长为6的等边三角形,PA=PB=PC=,若P,A,
4、B,C四点在某个球的球面上,则该球的表面积为 。三、解答题(本大题必做题5小题,三选一选1小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分)已知等差数列满足,。(I) 求数列的通项公式;(II)记,求数列的前n项和。18. (本小题满分12分)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组第五组,如图是按上述分组方法得到的频率分布直方图。() 在第一组和第五组内任取两个学生,记这两人的百米测试成绩分别为求事件“”的概率;() 根据有关规定,
5、成绩小于16秒为达标如果男女生使用相同的达标标准,则男女生达标情况如附表:性别是否达标男女合计达标_不达标_合计_完成上述22列联表,根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?附: 19. (本小题满分12分) E如图所示的几何体中,矩形和矩形所在平面互相垂直, ,为的中点,。()求证:;()求证:。20. (本小题满分12分)已知椭圆E的左、右焦点坐标分别为(,0)、(2,0),离心率是,过左焦点任作一条与坐标轴不垂直的直线交E于A、B两点。 (I)求椭圆E的方程; (II)已知点M(,0),试判断直线AM与直线BM的倾斜角是否总是互补
6、,并说明理由。21(本小题满分12分)已知,其中是自然常数,R。(I)当=1时,求的单调区间和极值;(II)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由。请考生在第22、23、24题中任选一题在答题纸上做答,如果多做,则按所做的第一题记分。22.(本小题满分10分) 选修4-1:几何证明选讲 如图,D、E分别为ABC的边AB、AC上的点,且不与ABC的顶点重合。已知AE的长为,AC的长为,AD、AB的长是关于的方程的两个根。 CEAB(I)证明:C、B、D、E四点共圆;(II)若A=90,且,求C、B、D、E所在圆的半径。23.(本小题满分10分) 选修4-4:坐标系与参
7、数方程 以直角坐标系的原点O为极点,轴的正半轴为极轴,且两个坐标系取相等的单位长度已知直线经过点P(1,1),倾斜角。(I)写出直线的参数方程; (II)设直线与圆相交于两点A、B,求点P到A、B两点的距离之积。24.(本小题满分10分) 选修4-5:不等式选讲已知函数。(I)若不等式6的解集为,求实数的值;(II)在(I)的条件下,若存在实数使成立,求实数的范围。昆明市五华区新世纪高级中学2012届高三第一次模拟考试题文科数学评分标准一、选择题:题号123456789101112答案ADABDBCCDACB二、填空题:13. 14. 15. 16. 三、解答题17. 解:(I)设等差数列的公
8、差为d,由已知条件可得解得故数列的通项公式为 .5分 (II)设数列,即,所以,当时, =所以综上,数列 .12分所以.6分()性别是否达标男女合计达标a=24b=630不达标c=8d=1220合计3218n=50.9分8333由于6625,故有99%的把握认为“体育达标与性别有关”故可以根据男女生性别划分达标的标准.12分19. (I)证明:连结交于,连结BNMFDEOA 因为为中点,为中点,所以,又因为,所以; 4分(II)因为正方形和矩形所在平面互相垂直,所以所以,又因为所以,所以因为,正方形和矩形,所以,所以,所以,又因为,所以又因为,所以,所以,所以。 12分 22. 解析:(I)连
9、接DE,根据题意在ADE和ACB中, 即.又DAE=CAB,从而ADEACB 因此ADE=ACB 所以C,B,D,E四点共圆。()m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GHAB, HFAC. HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为5 23.解:(I)直线的参数方程是 -(5分)(II)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为圆化为直角坐标系的方程以直线l的参数方程代入圆的方程整理得到 因为t1和t2是方程的解,从而t1t22所以|PA|PB|= |t1t2|2|2 -(12分)