1、相交与平行(30分钟50分)一、选择题(每小题4分,共12分)1.下列说法正确的个数是()(1)两条直线不相交就平行.(2)在同一平面内,两条平行的直线有且只有一个交点.(3)过一点有且只有一条直线与已知直线平行.(4)平行于同一直线的两条直线互相平行.A.0个B.1个C.2个D.4个2.在一个平面上任意画3条直线,最多可把平面分成的部分是()A.4个B.6个C.7个D.8个3.如图,若ABCD,CDEF,那么AB和EF的位置关系是()A.平行B.相交C.垂直D.不能确定二、填空题(每小题4分,共12分)4.同一平面内不重合的三条直线,其交点的个数可能为.5.在同一平面内,经过直线a外一点P的
2、4条不重合的直线中,与直线a平行的直线有条.6.如图,在46的正方形网格中,点A,B,C,D,E,F都在格点上,连接C,D,E,F中任意两点得到的所有线段中,与线段AB平行的线段是.三、解答题(共26分)7.(8分)如图,长方体ABCD-EFGH,(1)图中与棱AB平行的棱有哪些?(2)图中与棱AD平行的棱有哪些?(3)连接AC,EG,问AC,EG是否平行?(4)设想将各条棱都延伸成直线,能否找出与AB既不平行又不相交的直线?8.(8分)如图,梯形ABCD中,ADBC,P是AB的中点.(1)过点P作AD的平行线交DC于点Q.(2)PQ与BC平行吗?为什么?(3)测量DQ与CQ是否相等.【拓展延
3、伸】9.(10分)在同一平面内,小亮画了5条直线,发现图中只有4个交点,你能画出来吗?请尝试画出2种具有其他位置关系的5条直线,并说出交点个数.答案解析1.【解析】选B.(1)在同一平面内两条直线还有可能重合,也没有说明在同一平面内,故(1)错误.(2)在同一平面内,两条平行的直线没有交点,故(2)错误.(3)应为过直线外一点有且只有一条直线与已知直线平行,故(3)错误.(4)平行于同一直线的两条直线互相平行,是平行公理的重要推论,故(4)正确.2.【解析】选C.当三条直线两两相交且交点不相同时,将平面分成的部分最多.如图所示,可分成7个部分.3.【解析】选A.因为平行于同一条直线的两直线平行
4、,所以ABEF.4.【解析】如图,三条直线的位置关系有以下四种情况:答案:0,1,2,35.【解析】因为点P在直线a外,经过直线a外一点P的所有直线中,与直线a平行的直线有且只有一条,所以4条直线中最多有一条与a平行,也可能都不与a平行.答案:1或06.【解析】分别画出C,D,E,F中每两点所在直线,如图所示:只有FD所在直线与AB所在直线不相交,故与AB平行的线段是FD.答案:FD7.【解析】(1)与棱AB平行的棱有CD,GH,FE.(2)与棱AD平行的棱有BC,FG,EH.(3)AC,EG平行.(4)能.如棱EH,FG,DH,GC,当它们无限延伸成直线时,与AB既不平行又不相交.8.【解析
5、】(1)如图所示:(2)平行,因为PQAD,ADBC,所以PQBC(如果两条直线都和第三条直线平行,那么这两条直线互相平行).(3)相等.9.【解析】如图所示,直线abcd,直线e与a,b,c,d相交,其他情况:(不唯一,现列举8种情况)(1)abcde,0个交点.(2)abc,d,e与a,b,c相交且d,e相交,7个交点或5个交点.(3)abc,d,e与a,b,c相交且de,6个交点.(4)ab,d,e,c都与a,b相交,且d,e,c交于一点,4个交点或7个交点.(5)ab,d,e,c都与a,b相交,且d,e,c两两相交于3点,9个交点.(6)a,b,c,d,e五条直线相交于一点,共1个交点.(7)a,b,c相交于一点,e,d都与a,b,c相交,e,d交于一点,共8个交点.(8)a,b,c,d,e两两相交,任意三条直线都不交于同一点,共10个交点.