1、利用导数解决函数的单调性问题 一、选择题1(2021南阳模拟)已知函数f (x)x25x2ln x,则函数f (x)的单调递增区间是()A和(1,)B(0,1)和(2,)C和(2,)D(1,2)C函数f (x)x25x2ln x的定义域是(0,)f (x)2x5,令f (x)0,解得0x或x2,故函数f (x)的单调递增区间是和(2,)2若函数f (x)2x33mx26x在区间(1,)上为增函数,则实数m的取值范围是()A(,1B(,1)C(,2D(,2)Cf (x)6x26mx6,由已知条件知x(1,)时,f (x)0恒成立设g(x)6x26mx6,则g(x)0在(1,)上恒成立即mx在(1
2、,)上恒成立,设h(x)x,则h(x)在(1,)上是增函数,h(x)2,从而m2,故选C3函数f (x)x2xsin x的图像大致为()ABCDA函数f (x)的定义域为R,且f (x)(x)2(x)sin(x)x2xsin xf (x),则函数f (x)为偶函数,排除B又f (x)2xsin xxcos x(xsin x)x(1cos x),当x0时,xsin x0,x(1cos x)0,f (x)0,即函数f (x)在(0,)上是增函数,故选A4已知函数f (x)sin xcos x2x,af (),bf (2e),cf (ln 2),则a,b,c的大小关系是()AacbBabcCbacD
3、cbaAf (x)cos xsin x20,即函数f (x)在R上是减函数,又ln 22e,f ()f (ln 2)f (2e),即acb,故选A5设f (x),g(x)是定义在R上的恒大于0的可导函数,且f (x)g(x)f (x)g(x)0,则当axb时,有()Af (x)g(x)f (b)g(b)Bf (x)g(a)f (a)g(x)Cf (x)g(b)f (b)g(x)Df (x)g(x)f (a)g(a)C令F(x),则F(x)0,所以F(x)在R上单调递减又axb,所以又f (x)0,g(x)0,所以f (x)g(b)f (b)g(x)6已知函数f (x)是函数f (x)的导函数,
4、f (1),对任意实数都有f (x)f (x)0,设F(x),则不等式F(x)的解集为()A(,1)B(1,)C(1,e)D(e,)BF(x)0,F(x)是R上的减函数,又F(1),F(x)F(x)F(1)x1,故选B二、填空题7若函数f (x)ax33x2x恰好有三个单调区间,则实数a的取值范围是_(3,0)(0,)由题意知f (x)3ax26x1,由函数f (x)恰好有三个单调区间,得f (x)有两个不相等的零点,所以3ax26x10需满足a0,且3612a0,解得a3且a0,所以实数a的取值范围是(3,0)(0,)8若函数f (x)ln xax22x存在单调递减区间,则实数a的取值范围是
5、_(1,)f (x)ax2,由题意知f (x)0有实数解,x0,ax22x10有实数解当a0时,显然满足;当a0时,只需44a0,1a0综上知a19定义在(0,)上的函数f (x)满足x2f (x)10,f (1)4,则不等式f (x)3的解集为_(1,)由x2f (x)10得f (x)0,构造函数g(x)f (x)3,则g(x)f (x)0,即g(x)在(0,)上是增函数又f (1)4,则g(1)f (1)130,从而g(x)0的解集为(1,),即f (x)3的解集为(1,)三、解答题10已知函数f (x)(k为常数,e是自然对数的底数),曲线yf (x)在点(1,f (1)处的切线与x轴平
6、行(1)求k的值;(2)求f (x)的单调区间解(1)由题意得f (x),又因为f (1)0,故k1(2)由(1)知,f (x),设h(x)ln x1(x0),则h(x)0,即h(x)在(0,)上是减函数由h(1)0知,当0x1时,h(x)0,从而f (x)0;当x1时,h(x)0,从而f (x)0综上可知,f (x)的单调递增区间是(0,1),单调递减区间是(1,)11已知函数f (x)x3ax1(1)若f (x)在R上为增函数,求实数a的取值范围;(2)若函数f (x)在(1,1)上为单调减函数,求实数a的取值范围;(3)若函数f (x)的单调递减区间为(1,1),求实数a的值;(4)若函
7、数f (x)在区间(1,1)上不单调,求实数a的取值范围解(1)因为f (x)在(,)上是增函数,所以f (x)3x2a0在(,)上恒成立,即a3x2对xR恒成立因为3x20,所以只需a0又因为a0时,f (x)3x20,f (x)x31在R上是增函数,所以a0,即实数a的取值范围为(,0(2)由题意知f (x)3x2a0在(1,1)上恒成立,所以a3x2在(1,1)上恒成立,因为当1x1时,3x23,所以a3,所以a的取值范围为3,)(3)由题意知f (x)3x2a,则f (x)的单调递减区间为,又f (x)的单调递减区间为(1,1),所以1,解得a3(4)由题意知:f (x)3x2a,当a
8、0时,f (x)0,此时f (x)在(,)上为增函数,不合题意,故a0令f (x)0,解得x因为f (x)在区间(1,1)上不单调,所以f (x)0在(1,1)上有解,需01,得0a3,所以实数a的取值范围为(0,3)1已知a,b,c,则()AabcBcbaCacbDbacA设f (x),则f (x),令f (x)0得ln x0,0x1,所以f (x)在(0,1)上单调递增,在(1,)上单调递减又af (e),bf (3),cf (5),且1e35,f (e)f (3)f (5),即abc,故选A2(2021西安模拟)已知函数f (x)x24x3ln x在t,t1上不单调,则实数t的取值范围是
9、_(0,1)(2,3)f (x)x4,令f (x)0得x1或x3,由题意知t1t1或t3t1,解得0t1或2t3,故t的取值范围是(0,1)(2,3)3设函数f (x)aln x,其中a为常数(1)若a0,求曲线yf (x)在点(1,f (1)处的切线方程;(2)讨论函数f (x)的单调性解(1)由题意知a0时,f (x),x(0,)此时f (x),可得f (1)又f (1)0,所以曲线yf (x)在(1,f (1)处的切线方程为x2y10(2)函数f (x)的定义域为(0,)f (x)当a0时,f (x)0,函数f (x)在(0,)上递增当a0时,令g(x)ax2(2a2)xa,由于(2a2
10、)24a24(2a1),当a时,0,f (x)0,函数f (x)在(0,)上递减当a时,0,g(x)0,f (x)0,函数f (x)在(0,)上递减当a0时,0设x1,x2(x1x2)是函数g(x)的两个零点,则x1,x2由x10,所以x(0,x1)时,g(x)0,f (x)0,函数f (x)递减;x(x1,x2)时,g(x)0,f (x)0,函数f (x)递增;x(x2,)时,g(x)0,f (x)0,函数f (x)递减综上可得:当a0时,函数f (x)在(0,)上递增;当a时,函数f (x)在(0,)上递减;当a0时,f (x)在,上递减,在上递增1f (x)是定义在R上的奇函数,当x0时
11、,f (x)xf (x)0,且f (3)0,则不等式f (x)0的解集为()A(3,0)(3,)B(3,0)(0,3)C(,3)(3,)D(,3)(0,3)D设g(x)xf (x),则g(x)f (x)xf (x),则当x0时,g(x)0,g(x)在(,0)上单调递减,由f (x)是定义在R上的奇函数知g(x)xf (x)为偶函数,g(x)在(0,)上单调递增f (3)0,g(3)g(3)3f (3)0当x0时,若f (x)0,则g(x)0,0x3,当x0时,若f (x)0,则g(x)0,x3不等式f (x)0的解集为(,3)(0,3),故选D2已知函数f (x)(xa)exax2a(a1)x
12、(aR),讨论f (x)的单调性解f (x)(xa)exexaxa(a1)x(a1)(exa)当a0时,exa0当x(,a1)时,f (x)0,f (x)为减函数;当x(a1,)时,f (x)0,f (x)为增函数当a0时,令f (x)0,得x1a1,x2ln a令g(a)a1ln a,则g(a)1当a(0,1)时, g(a)0,g(a)为减函数;当a(1,)时,g(a)0,g(a)为增函数g(a)ming(1)0,a1ln a(当且仅当a1时取“”)当0a1或a1时,x(,ln a),f (x)0,f (x)为增函数,x(ln a,a1),f (x)0,f (x)为减函数,x(a1,),f (x)0,f (x)为增函数当a1时,f (x)x(ex1)0,f (x)在(,)上为增函数综上所述,当a0时,f (x)在(,a1)上单调递减,在(a1,)上单调递增;当0a1或a1时,f (x)在(ln a,a1)上单调递减,在(,ln a)和(a1,)上单调递增;当a1时,f (x)在(,)上单调递增