ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:217.50KB ,
资源ID:7449      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-7449-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.2.1《排列》教案(新人教选修2-3).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

1.2.1《排列》教案(新人教选修2-3).doc

1、 1.2.1排列(第一课时)教学目标:理解排列、排列数的概念,了解排列数公式的推导 教学重点:理解排列、排列数的概念,了解排列数公式的推导 教学过程一、复习引入:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,由第k种途径有nk种方法可以完成。那么,完成这件工作共有n1+n2+nk种不同的方法。2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,完成第K步有nK种不同的方法。那么,完成这件工作共有n1n2nk种不同方法二、讲解新课:1排列的概念:从个不同元素中

2、,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列; (2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同2排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列3排列数公式及其推导:求以按依次填个空位来考虑,排列

3、数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n的阶乘)4.例子:例1计算:(1); (2); (3)解:(1) 3360 ;(2) 720 ;(3)360例2(1)若,则 , (2)若则用排列数符号表示 解:(1) 17 , 14 (2)若则 例3(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?

4、解:(1);(2);(3)课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:第16页练习课后作业:第27页习题A:1.2.3 1.2.1排列(第二课时)教学目标:掌握解排列问题的常用方法 教学重点:掌握解排列问题的常用方法 教学过程一、复习引入:1排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列; (2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同2排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取

5、出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列3排列数公式及其推导:()全排列数:(叫做n的阶乘)二、讲解新课:解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等解排列问题和组合问题,一定要防止

6、“重复”与“遗漏”互斥分类分类法先后有序位置法反面明了排除法相邻排列捆绑法分离排列插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻例2在3000与8000之间,数字不重复的奇数有多少个?分析 符合条件的奇数有两类一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个解 符合条件的奇数共有P

7、21P51P82+P31P41P82=1232个答 在3000与8000之间,数字不重复的奇数有1232个例3 某小组6个人排队照相留念(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析 (1)分两排照相实际上与排成一排照相一样

8、,只不过把第36个位子看成是第二排而已,所以实际上是6个元素的全排列问题(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种因为这是分步问题,所以用乘法原理,有P21P41P44种不同排法(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法然后甲、乙两人之间再排队,有P22种排法因为是分步问题,应当用乘法原理,所以有P55P22种排法(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法(5)采用“插入法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如_女_女_女_,再把3个男生放到这4个位子上,就保证任何两个男生

9、都不会相邻了这样男生有P43种排法,女生有P33种排法因为是分步问题,应当用乘法原理,所以共有P43P33种排法(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法解 (1)P66=720(种)(2)P21P41P44=2424=192(种)(3)P55P22=1202=240(种)(4)P66=360(种)(5)P43P33=246=144(种)(6)P55+P41P41P44=120+4424=504(种)或法二:(间接法)P66-2P55+P44=720-240+24=504(种)课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:第16页练习课后作业:第27页习题A:4.5.6

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3