收藏 分享(赏)

广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx

上传人:高**** 文档编号:744390 上传时间:2024-05-30 格式:DOCX 页数:11 大小:43.82KB
下载 相关 举报
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第1页
第1页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第2页
第2页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第3页
第3页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第4页
第4页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第5页
第5页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第6页
第6页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第7页
第7页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第8页
第8页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第9页
第9页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第10页
第10页 / 共11页
广西专用2022年高考数学一轮复习 单元质检三 导数及其应用(含解析)新人教A版(理)..docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、单元质检三导数及其应用(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如果一个物体的运动方程为s=1-t+t2,其中s的单位是m,t的单位是s,那么物体在3 s末的瞬时速度是()A.7 m/sB.6 m/sC.5 m/sD.8 m/s答案:C2.设曲线y=x+1x-1在点(3,2)处的切线与直线ax+y+3=0垂直,则a等于()A.2B.-2C.12D.-12答案:B3.若函数y=ex+mx有极值,则实数m的取值范围是()A.m0B.m1D.m1答案:B4.已知函数f(x)=-x3+ax2-x-1在R上是减函数,则实数a的取值范围是()A.(-,-33

2、,+)B.-3,3C.(-,-3)(3,+)D.(-3,3)答案:B5.函数f(x)=x2+x-ln x的零点的个数是()A.0B.1C.2D.3答案:A6.设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x答案:D解析:因为f(x)为奇函数,所以f(-x)=-f(x),即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax,解得a=1,则f(x)=x3+x.由f(x)=3x2+1,得曲线y=f(x)在点(0,0)处的切线斜率k=f(0)=1.故切线方程为y=x.7.已知当x1

3、2,2时,a1-xx+ln x恒成立,则a的最大值为()A.0B.1C.2D.3答案:A解析:令f(x)=1-xx+lnx,则f(x)=x-1x2.当x12,1时,f(x)0.f(x)在区间12,1内单调递减,在区间(1,2上单调递增,在区间12,2上,f(x)min=f(1)=0,a0,即a的最大值为0.8.已知函数f(x)=xsin x,x1,x2-2,2,且f(x1)0B.x1+x20C.x12-x220D.x12-x220,故f(x)在区间0,2内单调递增.又f(-x)=-xsin(-x)=xsinx=f(x),f(x)为偶函数,当f(x1)f(x2)时,f(|x1|)f(|x2|),

4、|x1|x2|,x12-x220.故选D.9.已知函数f(x)=ln x+tan 02的导函数为f(x),若方程f(x)=f(x)的根x0小于1,则的取值范围为()A.4,2B.0,3C.6,4D.0,4答案:A解析:f(x)=lnx+tan,f(x)=1x.令f(x)=f(x),得lnx+tan=1x,即tan=1x-lnx.设g(x)=1x-lnx,显然g(x)在区间(0,+)内单调递减,而当x0时,g(x)+,故要使满足f(x)=f(x)的根x0g(1)=1.又00,解得0x344,令f(x)344,故f(x)在区间0,344内单调递增,在区间344,+内单调递减,故f(x)的最大值是f

5、344,于是a=344.11.若函数f(x)=x33-a2x2+x+1在区间12,3内有极值点,则实数a的取值范围是()A.2,52B.2,52C.2,103D.2,103答案:C解析:若f(x)=x33-a2x2+x+1在区间12,3内有极值点,则f(x)=x2-ax+1在区间12,3内有零点,且零点不是f(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+1x.因为x12,3,y=x+1x的值域是2,103,当a=2时,f(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是2,103,故选C.12.(2020广西贵港四模)设函数f(x)是奇函数f(x)(xR)的导函

6、数,f(-1)=0,当x0时,xf(x)-f(x)0.已知a=flog214,b=f(31.5),c=f(21.5),则()A.acbB.abcC.bcaD.ca0时,xf(x)-f(x)0,f(x)x=xf(x)-f(x)x20,f(x)x在区间(0,+)内单调递增,又f(x)是奇函数,且f(-1)=0,f(1)=0,当x(0,1)时,f(x)0,a=flog214=f(-2)=-f(2)21.51,f(31.5)0,f(21.5)0,且f(31.5)31.5f(21.5)21.5,f(31.5)f(21.5)321.51,b=f(31.5)f(21.5)=c0.acb.二、填空题(本大题共

7、4小题,每小题5分,共20分)13.函数y=x-x2的图象与x轴所围成的封闭图形的面积等于.答案:16解析:由x-x2=0,得x=0或x=1.因此,所围成的封闭图形的面积为01(x-x2)dx=x22-x3301=12-13=16.14.(2020广西钦州一模)已知函数f(x)=x(x5-16x2+x-4),且f(x)f(x0)对xR恒成立,则曲线y=f(x)x在点x0,f(x0)x0处的切线的斜率为.答案:17解析:f(x)=x(x5-16x2+x-4)=x6-16x3+x2-4x=(x3-8)2+(x-2)2-68,当x=2时,函数f(x)取得最小值,x0=2.f(x)x=5x4-32x+

8、1,曲线y=f(x)x在点x0,f(x0)x0处的切线的斜率k=524-322+1=17.15.已知函数f(x)=e|x-1|,函数g(x)=ln x-x+a,若x1,x2使得f(x1)g(x2)成立,则a的取值范围是.答案:(2,+)解析:由题意,若x1,x2使得f(x1)g(x2)成立,可转化为f(x)min0),当x(0,1)时,g(x)0,则函数g(x)单调递增;当x(1,+)时,g(x)1,解得a2,即实数a的取值范围是(2,+).16.已知函数f(x)=xln x+12x2,x0是函数f(x)的极值点,给出以下几个结论:0x01e;f(x0)+x00.其中正确的结论是.(填出所有正

9、确结论的序号)答案:解析:由已知得f(x)=lnx+x+1(x0),不妨令g(x)=lnx+x+1(x0),由g(x)=1x+1,当x(0,+)时,有g(x)0总成立,所以g(x)在区间(0,+)内单调递增,且g1e=1e0,又x0是函数f(x)的极值点,所以f(x0)=g(x0)=0,即g1eg(x0),所以0x01e,即结论正确,则结论错误;因为lnx0+x0+1=0,所以f(x0)+x0=x0lnx0+12x02+x0=x0(lnx0+x0+1)-12x02=-12x0212.(2)由f(x)=(1-x)(2x-1-2)e-x2x-1=0,解得x=1或x=52.当x变化时,f(x),f(

10、x)的变化情况如下:x1212,111,525252,+f(x)-0+0-f(x)12e-12单调递减0单调递增12e-52单调递减又f(x)=12(2x-1-1)2e-x0,所以f(x)在区间12,+内的取值范围是0,12e-12.18.(12分)设函数f(x)=ex-1-x-ax2.(1)若a=0,讨论f(x)的单调性;(2)若当x0时,f(x)0,求a的取值范围.解:(1)当a=0时,f(x)=ex-1-x,f(x)=ex-1.当x(-,0)时,f(x)0.故f(x)在区间(-,0)内单调递减,在区间(0,+)内单调递增.(2)f(x)=ex-1-2ax.由(1)知f(x)f(0),即e

11、x1+x,当且仅当x=0时等号成立,故f(x)x-2ax=(1-2a)x.当a12时,1-2a0,f(x)0(x0),f(x)在区间0,+)内是增函数,因为f(0)=0,于是当x0时,f(x)0.符合题意.当a12时,由ex1+x(x0)可得e-x1-x(x0).所以f(x)ex-1+2a(e-x-1)=e-x(ex-1)(ex-2a),故当x(0,ln2a)时,f(x)0,而f(0)=0,于是当x(0,ln2a)时,f(x)0.(1)求函数f(x)的最小值;(2)当x2a时,证明:f(x)-f(2a)x-2a32a.答案:(1)解函数f(x)的定义域为(0,+),f(x)=x-a2x=(x+

12、a)(x-a)x.当x(0,a)时,f(x)0,f(x)单调递增.所以当x=a时,f(x)取得极小值,也是最小值,且f(a)=12a2-a2lna.(2)证明由(1)知,f(x)在区间(2a,+)内单调递增,则所证不等式等价于f(x)-f(2a)-32a(x-2a)0.设g(x)=f(x)-f(2a)-32a(x-2a),则当x2a时,g(x)=f(x)-32a=x-a2x-32a=(2x+a)(x-2a)2x0,所以g(x)在区间(2a,+)内单调递增.所以当x2a时,g(x)g(2a)=0,即f(x)-f(2a)-32a(x-2a)0,故f(x)-f(2a)x-2a32a.20.(12分)

13、已知函数f(x)=ln x-ax2-2x,aR.(1)当a0时,求函数f(x)的单调区间;(2)若函数h(x)=f(x)+3ax2+3x的极值大于零,求实数a的取值范围.解:(1)函数f(x)的定义域为(0,+),且f(x)=1x-2ax-2=-2ax2-2x+1x,当a=0时,令f(x)=-2x+1x=0,得x=12.所以当x0,12时,f(x)0,f(x)单调递增;当x12,+时,f(x)0时,令f(x)=0,则-2ax2-2x+1=0.因为=(-2)2-4(-2a)=4+8a0,x0,所以x=-1+1+2a2a.故函数f(x)在区间0,-1+1+2a2a内单调递增,在区间-1+1+2a2

14、a,+内单调递减.综上,当a=0时,函数f(x)的单调递增区间为0,12,单调递减区间为12,+;当a0时,函数f(x)的单调递增区间为0,-1+1+2a2a,单调递减区间为-1+1+2a2a,+.(2)由题意可知,函数h(x)=lnx+2ax2+x,所以h(x)=1x+4ax+1=4ax2+x+1x(x0).当a0时,h(x)0,可知函数h(x)在区间(0,+)内单调递增,无极值,不符合题意;当a0,且两根之积为x1x2=14a0,不妨设x10,x2=-1-1-16a8a,则由h(x)=0可得x=x2,故h(x)在区间(0,x2)内单调递增,在区间(x2,+)内单调递减,所以x=x2为极值点

15、.由题意可知,h(x2)=lnx2+2ax22+x20.又4ax22+x2+1=0,所以lnx2+x2-120.构造函数g(x)=lnx+x-12(x0),则g(x)=1x+120,所以函数g(x)在区间(0,+)内单调递增.又g(1)=0,所以由g(x)0,解得x1,即x2=-1-1-16a8a1,解得-12a0,当0a1时,f(1)=a+lna1.当a=1时,f(x)=ex-1-lnx,f(x)=ex-1-1x.当x(0,1)时,f(x)0.所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)1.当a1时,f(x)=aex-1-lnx+lnaex-1-lnx1.综上,a的

16、取值范围是1,+).22.(12分)已知函数f(x)=x3+ax2+bx+1(a0,bR)有极值,且导函数f(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b23a;(3)若f(x),f(x)这两个函数的所有极值之和不小于-72,求a的取值范围.答案:(1)解由f(x)=x3+ax2+bx+1,得f(x)=3x2+2ax+b=3x+a32+b-a23.当x=-a3时,f(x)有最小值,也是极小值,即b-a23.因为f(x)的极值点是f(x)的零点,所以f-a3=-a327+a39-ab3+1=0,又a0,故b=2

17、a29+3a.因为f(x)有极值,故f(x)=0有实根,从而b-a23=19a(27-a3)0,即a3.当a=3时,f(x)0且f(x)不恒等于0,故f(x)在R上是增函数,f(x)没有极值;当a3时,f(x)=0有两个相异的实根x1=-a-a2-3b3,x2=-a+a2-3b3.当x变化时,f(x),f(x)的变化情况如下:x(-,x1)x1(x1,x2)x2(x2,+)f(x)+0-0+f(x)单调递增极大值单调递减极小值单调递增故f(x)的极值点是x1,x2.从而a3.因此b=2a29+3a,定义域为(3,+).(2)证明由(1)知,ba=2aa9+3aa.设g(t)=2t9+3t,则g

18、(t)=29-3t2=2t2-279t2.当t362,+时,g(t)0,从而g(t)在区间362,+内单调递增.因为a3,所以aa33,故g(aa)g(33)=3,即ba3.因此b23a.(3)解由(1)知,f(x)的极值点是x1,x2,且x1+x2=-23a,x12+x22=4a2-6b9.从而f(x1)+f(x2)=x13+ax12+bx1+1+x23+ax22+bx2+1=x13(3x12+2ax1+b)+x23(3x22+2ax2+b)+13a(x12+x22)+23b(x1+x2)+2=4a3-6ab27-4ab9+2=0.记f(x),f(x)所有极值之和为h(a),因为f(x)的极值为b-a23=-19a2+3a,所以h(a)=-19a2+3a,a3.因为h(a)=-29a-3a20,于是h(a)在区间(3,+)上单调递减.因为h(6)=-72,于是h(a)h(6),故a6.因此a的取值范围为(3,6.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3