ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:172KB ,
资源ID:74363      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-74363-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新方案》2015高考数学(理)一轮突破热点题型:第9章 第2节 导数的应用(1).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新方案》2015高考数学(理)一轮突破热点题型:第9章 第2节 导数的应用(1).doc

1、高考资源网( ),您身边的高考专家第二节导数的应用(一) 考点一利用导数研究函数的单调性 例1(2013重庆高考改编)设f(x) a(x5)26ln x,其中aR,曲线yf(x)在点(1,f(1)处的切线与y轴相交于点(0,6)(1)确定a的值;(2)求函数f(x)的单调区间自主解答(1)因为f(x)a(x5)26ln x,故f(x)2a(x5).令x1,得f(1)16a,f(1)68a,所以曲线yf(x)在点(1,f(1)处的切线方程为y16a(68a)(x1),由点(0,6)在切线上可得616a8a6,故a.(2)由(1)知,f(x)(x5)26ln x(x0),f(x)x5.令f(x)0

2、,解得x12,x23.当0x3时,f(x)0,故f(x)在(0,2),(3,)上为增函数;当2x3时,f(x)0(f(x)0)当x(0,1),f(x)0时,函数f(x)3x2x2ln x单调递增当x(1,),f(x)0时,函数f(x)3x2x2ln x单调递减故函数f(x)的单调递增区间为(0,1),单调递减区间为(1,)(2)f(x)4x,若函数f(x)在区间1,2上为单调函数,即在1,2上,f(x)4x0或f(x)4x0,即4x0或4x0在1,2上恒成立即4x或4x.令h(x)4x,因为函数h(x)在1,2上单调递增,所以h(2)或h(1),即或3,解得a0或00,b0,且函数f(x)4x

3、3ax22bx2在x1处有极值,则ab的最大值等于()A2 B3 C6 D9 (3)(2013福建高考)已知函数f(x)xaln x(aR)当a2时,求曲线yf(x)在点A(1,f(1)处的切线方程;求函数f(x)的极值自主解答(1)当x0.(1x)f(x)0,f(x)0,即f(x)在(,2)上是增函数当2x0.(1x)f(x)0,f(x)0,即f(x)在(2,1)上是减函数当1x2时,1x0,f(x)2时,1x0.(1x)f(x)0,即f(x)在(2,)上是增函数综上:f(2)为极大值,f(2)为极小值(2)f(x)12x22ax2b,f(x)在x1处有极值,f(1)122a2b0,即ab6

4、,又a0,b0,ab2,ab9,当且仅当ab3时等号成立,ab的最大值为9.(3)函数f(x)的定义域为(0,),f(x)1.当a2时,f(x)x2ln x,f(x)1(x0),因而f(1)1,f(1)1,所以曲线yf(x)在点A(1,f(1)处的切线方程为y1(x1),即xy20.由f(x)1,x0知:当a0时,f(x)0,函数f(x)为(0,)上的增函数,函数f(x)无极值;当a0时,由f(x)0,解得xa.又当x(0,a)时,f(x)0,从而函数f(x)在xa处取得极小值,且极小值为f(a)aaln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在xa处取得极小值

5、aaln a,无极大值答案(1)D(2)D函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号(2)已知函数求极值求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论(3)已知极值求参数若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反1(2013浙江高考)已知e为自然对数的底数,设函数f(x)(ex1)(x1)k(k1,2),则()A当k1时,f(x)在x1处取到极小值B当k1时,f(x)在x1 处取到极大值 C当k2时,f(x)在x1处取到极小值 D

6、当k2时,f(x)在x1处取到极大值 解析:选C当k1时,f(x)(ex1)(x1),0,1是函数f(x)的零点当0x1时,f(x)(ex1)(x1)1时,f(x)(ex1)(x1)0,1不会是极值点当k2时,f(x)(ex1)(x1)2,零点还是0,1,但是当0x1时,f(x)0,由极值的概念,知选C.2已知函数f(x)ax1ln x(aR)(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x1处取得极值,且对任意的x(0,),f(x)bx2恒成立,求实数b的取值范围解:(1)f(x)a,x0,当a0时,f(x)0时,令f(x)0得0x0得x,f(x)在上单调递减,在上单

7、调递增,即f(x)在x处有极小值综上所述,当a0时f(x)在(0,)上没有极值点;当a0时,f(x)在(0,)上有一个极值点(2)函数f(x)在x1处取得极值,由(1)可知a1,f(x)x1ln x.又f(x)bx2,x1ln xbx2,即1b.令g(x)1,g(x),当0xe2时,g(x)e2时,g(x)0,即g(x)在(e2,)上为增函数,g(x)在xe2处取得最小值,g(x)ming(e2)1,即b1.故实数b的取值范围为.考点三利用导数研究函数的最值问题 例3(2013广东高考)设函数f(x)(x1)exkx2(kR)(1)当k1时,求函数f(x)的单调区间;(2)当k时,求函数f(x

8、)在0,k上的最大值M.自主解答(1)当k1时,f(x)(x1)exx2,f(x)ex(x1)ex2xxex2xx(ex2)令f(x)0,得x10,x2ln 2.当x变化时,f(x),f(x)的变化如下表:x(,0)0(0,ln 2)ln 2(ln 2,)f(x)00f(x)极大值极小值由表可知,函数f(x)的递减区间为(0,ln 2),递增区间为(,0),(ln 2,)(2)f(x)ex(x1)ex2kxxex2kxx(ex2k),令f(x)0,得x10,x2ln(2k),令g(k)ln(2k)k,则g(k)10,所以g(k)在上递增,所以g(k)ln 21ln 2ln e0,从而ln(2k

9、)k,所以ln (2k)0,k,所以当x(0,ln(2k)时,f(x)0;所以Mmaxf(0),f(k)max1,(k1)ekk3令h(k)(k1)ekk31,则h(k)k(ek3k),令(k)ek3k,则(k)ek3e30,所以(k)在上递减,而(1)(e3)0,当k(x0,1)时,(k)0,h(1)0,所以h(k)0在上恒成立,当且仅当k1时等号成立综上,函数f(x)在0,k上的最大值M(k1)ekk3.【方法规律】求函数f(x)在a,b上最值的方法(1)若函数f(x)在a,b上单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值(2)若函数f(x)在区间(a,b)内有极值,先求出

10、函数f(x)在区间(a,b)上的极值,与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值(3)函数f(x)在区间(a,b)上有唯一一个极值点时,这个极值点就是最大(或最小)值点已知aR,函数f(x)2x33(a1)x26ax.(1)若a1,求曲线yf(x)在点(2,f(2)处的切线方程;(2)若|a|1,求f(x)在闭区间0,2|a|上的最小值解:(1)当a1时,f(x)6x212x6,所以f(2)6.又因为f(2)4,所以切线方程为y6x8.(2)记g(a)为f(x)在闭区间0,2|a|上的最小值f(x)6x26(a1)x6a6(x1)(xa)令f(x)0,得x11,x2a.当a1时,x0(0,1)1(1,a)a(a,2a)2af(x)00f(x)0极大值3a1极小值a2(3a)4a3比较f(0)0和f(a)a2(3a)的大小可得g(a)当a0在 (a,b)上成立,是f(x)在(a,b)上单调递增的充分不必要条件(2)对于可导函数f(x),f(x0)0是函数f(x)在xx0处有极值的必要不充分条件3个注意点利用导数求极值应注意三点(1)求单调区间时应先求函数的定义域,遵循定义域优先的原则; (2)f(x0)0时,x0不一定是极值点; (3)求最值时,应注意极值点和所给区间的关系,关系不确定时应分类讨论.欢迎广大教师踊跃来稿,稿酬丰厚。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3