ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:133KB ,
资源ID:741350      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-741350-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021秋九年级数学上册 第21章 二次函数与反比例函数21.2 二次函数的图象和性质 3二次函数y=ax2+bx+c的图象和性质(y=a(x+h)2型)教案(新版)沪科版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021秋九年级数学上册 第21章 二次函数与反比例函数21.2 二次函数的图象和性质 3二次函数y=ax2+bx+c的图象和性质(y=a(x+h)2型)教案(新版)沪科版.doc

1、21.2.3 二次函数y=ax+bx+c的图像和性质y=a(x+h)型教学目标【知识与技能】使学生能利用描点法画出二次函数y=a(x+h)2的图象.【过程与方法】让学生经历探究二次函数y=a(x+h)2性质的过程,理解函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的关系,培养学生观察、分析、猜测、归纳解决问题的能力.【情感、态度与价值观】培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.重点难点【重点】会用描点法画出二次函数y=a(x+h)2的图象,理解二次函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的

2、图象的关系.【难点】理解二次函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的相互关系.教学过程一、问题引入1.抛物线y=2x2+1、y=2x2-1的开口方向、对称轴和顶点坐标各是什么?2.二次函数y=-(x+1)2的图象与二次函数y=-x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、新课教授问题1:你将用什么方法来研究问题引入2提出的问题?(画出二次函数y=-(x+1)2和二次函数y=-x2的图象,并加以观察.)问题2:你能在同一直角坐标系中画出二次函数y=-x2与y=-(x+1)2的图象吗?师生活动:教师引导学

3、生作图,巡视、指导.学生在直角坐标系中画出图形.教师对学生的作图情况作出评价,指正错误,出示正确的图形.解:(1)列表:x-3-2-10123y=-x2-2-0-2-y=-(x+1)2-2-0-2-8 (2)描点:用表格中的各组对应值作为点的坐标,在平面直角坐标系中描点;(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2和y=-(x+1)2的图象. 问题3:当函数值y取同一数值时,这两个函数的自变量之间有什么关系?反映在图象上,相应的两点之间的位置又有什么关系?师生活动:教师引导学生观察上表,当y依次取0、-、-2、-时,两个函数的自变量之间有什么关系?学生归纳得到,当函数值取同一数值时

4、,函数y=-(x+1)2的自变量比函数y=-x2的自变量小1.教师引导学生观察函数y=-(x+1)2和函数y=-x2的图象,先研究点(-1,-)和点(0,-)、点(-1,0)和点(0,0)、点(1,-2)和点(2,-2)的位置关系.学生归纳得到:反映在图象上,函数y=-(x+1)2的图象上的点都是由函数y=-x2的图象上的相应点向左移动了一个单位.问题4:函数y=-(x+1)2和y=-x2的图象有什么联系?学生由问题3的探索,可以得到结论:函数y=-(x+1)2的图象可以看成是将函数y=-x2的图象向左平移一个单位得到的.问题5:现在你能回答前面提出的第2个问题了吗?学生观察两个函数的图象得:

5、函数y=-(x+1)2的图象开口方向向下,对称轴是直线x=-1,顶点坐标是(-1,0);函数y=-x2的图象开口方向向下,对称轴是直线x=0,顶点坐标是(0,0).问题6:你能由函数y=-(x+1)2的图象得到函数y=-(x+1)2的一些性质吗?生:当x-1时,函数值y随x的增大而减小;当x-1时,函数值y随x的增大而增大;当x=-1时,函数取得最大值,最大值y=0.问题7:先在同一直角坐标系中画出函数y=-(x-1)2与函数y=-x2的图象,再作比较,说说它们有什么联系和区别.师生活动:教师在学生画函数图象的同时,巡视指导.学生画图并仔细观察,细心研究.教师让学生发表意见,归纳为:函数y=-

6、(x-1)2与函数y=-x2的图象的开口方向相同,对称轴、顶点坐标不同.函数y=-(x-1)2的图象可以看成是将函数y=-x2的图象向右平移一个单位得到的. 问题8:你能说出函数y=-(x-1)2的图象的开口方向、对称轴和顶点坐标以及这个函数的性质吗?师生活动:教师引导学生观察y=-(x-1)2的图象,并引导学生思考其性质.学生分组讨论这个函数的性质,各组选派一名代表发言,达成共识:函数y=-(x-1)2的图象的开口向下,对称轴为直线x=1,顶点坐标是(1,0).当x1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=0.三、巩固练习1.在同一直角坐标系中,画出函数y=x2,

7、y=(x+1)2,y=(x-1)2的图象.(1)填表:xy=x2y=(x+1)2y=(x-1)2 (2)描点,连线: 【答案】略2.观察第1题中所画的图象,并填空:(1)抛物线y=(x+1)2的开口方向是 ,对称轴是 ,顶点坐标是 ;抛物线y=(x+1)2是由抛物线y=x2向 平移 个单位长度得到的; (2)对于y=(x-1)2,当x1时,函数值y随x的增大而 ;当x1时,函数值y随x的增大而 ; (3)对于函数y=x2,当x= 时,函数取得最 值,为 ; 对于函数y=(x+1)2,当x= 时,函数取得最 值,为 ; 对于函数y=(x-1)2,当x= 时,函数取得最 值,为 . 【答案】(1)

8、向上 x=-1 (-1,0) 左 1 (2)增大 减小 (3)0 小 0 -1 小 0 1 小 0四、课堂小结结论如下:1.函数y=ax2(a0)和函数y=a(x-h)2(a0)的图象形状相同,只是位置不同,把y=ax2的图象沿x轴向左(当h0时)平移|h|个单位就得到y=a(x-h)2的图象.2.抛物线y=a(x-h)2(a0)的性质.(1)抛物线y=a(x-h)2(a0)的对称轴是x=h,顶点坐标是(h,0).(2)当a0时,抛物线开口向上,并向上无限伸展;当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大;当x=h时,y有最小值.当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小;当x=h时,y有最大值.教学反思通过本节课的学习,要求大家理解并掌握函数y=ax2(a0)和函数y=a(x-h)2(a0)的图象形状相同,只是位置不同,把y=ax2的图象沿x轴向左(当h0时)平移|h|个单位就得到y=a(x-h)2的图象;能够理解a、h对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础.本节课的处理是在教师的引导下,学生进行观察、归纳、总结,充分体现以学生为主、教师为辅的教学思想.这样有助于提高学生分析问题和解决问题的能力.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3