1、外接球专题一球的截面若用一个平面去截半径为的球,得到的截面是一个圆:(1)若平面过球心,则截面圆是以球心为圆心的圆;(2)若平面不过球心,如图所示,小圆圆心为,则,记,则.例1(2020全国2卷)已知ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16,则O到平面ABC的距离为( )ABC1D【答案】C注:球的截面性质是我们处理外接球问题的根本思路!例2(2020全国1卷)已知为球的球面上的三个点,为的外接圆,若的面积为,则球的表面积为( )ABCD【答案】A球的截面性质告诉我们,在计算多面体的外接球时,我们的思路是从平面到空间,先从该多面体的一个面出发,找到其外接圆圆心
2、的位置,进一步,球心与该圆心的连线一定垂直于该平面,这样,就可找到球心和半径.二三角形的外心: .注:等边三角形的外心,直角三角形的外心,正方形,长方形的外心.三正方体,长方体的外接球.正长体或长方体的外接球的球心是其体对角线的中点四正棱柱,直棱柱的外接球.1.基本定义:棱柱:上下底面平行且全等,侧棱平行且相等的封闭叫棱柱.直棱柱:侧棱与底面垂直的棱柱称为直棱柱.正棱柱:底面是正多边形的直叫做正棱柱.正棱柱是都垂直于底面,且底面是正多边形的棱柱.2.外接球球心:直三棱柱的外接球的球心是上下底面三角形外心连线的中点.正棱柱外接球的球心是上下底面中心连线的中点。3.计算公式:设底面小圆的半径为,棱
3、柱高为,则.三典例分析例1(2022新高考1卷)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()ABCD解析: 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,当时,所以当时,正四棱锥的体积取最大值,最大值为,又时,时,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是. 故选:C.例2(2022全国乙卷)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()ABCD解析:设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半
4、径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又则当且仅当即时等号成立,故选:C例3(2022新高考2卷)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为()ABCD解析:设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,故或,即或,解得符合题意,所以球的表面积为故选:A三习题演练1.在平面四边形中,现将沿折起,使二面角的大小为.若四点在同一个球的球面上,则球的表面积为( )A.B.C.D.2.已知三棱锥
5、的顶点都在球O的球面上,且该三棱锥的体积为,平面,则球O的体积的最小值为_.3.如图,已知长方体的底面为正方形,P为棱的中点,且,则四棱锥的外接球的体积为_.4.设正四面体的内切球半径为r,外接球半径为R,则_.5.已知有两个半径为2的球记为,两个半径为3的球记为,这四个球彼此相外切,现有一个球O与这四个球都相内切,则球O的半径为_.习题答案1.答案:C解析:本题考查三棱锥的外接球、球的表面积.如图所示,设M为的中点,连接,依题意,折起后是二面角的平面角,则.易知,四面体的外接球的球心O在平面上,于是点O在底面上的射影是正的中心,设为点Q,而点O在侧面上的射影是M,易得,又,因此,进而,所以球
6、O的表面积为,故选C.2.答案:解析:本题考查空间几何体的体积.由题意得,三棱锥的体积,则,当球O的体积最小时,外接圆的半径最小,即最小,在中,由余弦定理和基本不等式得,当且仅当取等号,则,此时外接圆的直径,球O的半径,故球O的体积的最小值为.3.答案:解析:解法一 由题意知为正三角形,取的中点M,的中心N,记,连接,过分别作平面与平面的垂线,两垂线交于点O,则点O为四棱锥的外接球球心.由题意知,所以四棱锥的外接球半径,所以四棱锥的外接球的体积.解法二 连接,记,连接,易知四棱锥的外接球的球心O在线段上.取的中点G,连接,设,球O的半径为R,易知,则,得,则,所以四棱锥的外接球的体积.4.答案:解析:本题考查正四面体的外接球、内切球性质.如图,在正四面体PABC中,D,E分别为BC,AC的中点,连接AD,BE交于点F,则点F为正三角形ABC的外心,连接PF,则底面ABC,且正四面体PABC的外接球球心与内切球球心为同一点,应在线段PF上,记作点O,如图所示.不妨设正四面体PABC的棱长为a,则在中,.底面底面,.正四面体PABC的外接球、内切球球心均为O,.,且在中有,.5.答案:6解析:本题考查球的相切问题.由题意可得.如图,取的中点的中点N,连接则又平面同理可证平面平面平面球心O在线段MN上.设球O的半径为R,则.即解得.故球O的半径为6.