ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:269KB ,
资源ID:738491      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-738491-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017-2018学年高中数学苏教版选修2-2教学案:第1章 1-2 1-2-2 函数的和、差、积、商的导数 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017-2018学年高中数学苏教版选修2-2教学案:第1章 1-2 1-2-2 函数的和、差、积、商的导数 .doc

1、12.2函数的和、差、积、商的导数已知f(x)x,g(x).问题1:f(x)、g(x)的导数分别是什么?提示:f(x)1,g(x).问题2:若Q(x)x,则Q(x)的导数是什么?提示:y(xx)x,1.当x无限趋近于0时,无限趋近于1,Q(x)1.问题3:Q(x)的导数与f(x),g(x)的导数有什么关系?提示:Q(x)f(x)g(x)导数的运算法则设两个函数分别为f(x)和g(x),则(1)f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x);(3)Cf(x)Cf(x)(C为常数);(4)f(x)g(x)f(x)g(x)f(x)g(x);(5)(g(x)0)1对于和差的导

2、数运算法则,可推广到任意有限可导函数的和或差,即f1(x)f2(x)fn(x)f1(x)f2(x)fn(x)2对于积与商的导数运算法则,首先要注意在两个函数积与商的导数运算中,不能出现f(x)g(x)f(x)g(x)以及(5)这样想当然的错误;其次还要特别注意两个函数积与商的求导公式中符号的异同,积的导数法则中是“”,商的导数法则中分子上是“”求函数的导数例1求下列函数的导数:(1)yx2log3x;(2)yx3ex;(3)y;(4)yxtan x.思路点拨结合常见函数的导数公式及导数的四则运算法则直接求导精解详析(1)y(x2log3x)(x2)(log3x)2x.(2)y(x3ex)(x3

3、)exx3(ex)3x2exx3ex(3x2x3)ex.(3)y.(4)y(xtan x).一点通(1)应用基本初等函数的导数公式和导数运算法则可迅速解决一些简单的求导问题,要透彻理解函数求导法则的结构特点,准确熟记公式,还要注意挖掘知识的内在联系及其规律(2)在求较复杂函数的导数时应首先利用代数恒等变换对已知函数解析式进行化简或变形,如把乘积的形式展开,公式形式变为和或差的形式,根式化成分数指数幂,然后再求导,使求导计算更加简化1若f(x)x32x1,则f(1)_.解析:f(x)(2x)1x22,所以f(1)(1)223.答案:32函数yx(x21)的导数是_解析:yx(x21)(x3x)3

4、x21.答案:3x213求下列函数的导数:(1)y2x;(2)y.解:(1)y(2x)2xln 22xln 22xln 2.(2)y.导数运算法则的简单应用例2设f(x)aexbln x,且f(1)e,f(1),求a,b的值思路点拨首先求f(x),然后利用条件建立a,b的方程组求解精解详析f(x)(aex)(bln x)aex,由f(1)e,f(1),得解得所以a,b的值分别为1,0.一点通利用导数值求解参数问题,是高考的热点问题它比较全面地考查了导数的应用,突出了导数的工具性作用而熟练地掌握导数的运算法则以及常用函数的求导公式是解决此类问题的关键4设f(x)ax33x22,若f(1)4,则a

5、_.解析:f(x)ax33x22,f(x)3ax26x,f(1)3a64,即a.答案:5若函数f(x)在xc(c0)处的导数值与函数值互为相反数,求c的值解:f(x),f(c),又f(x),f(c),依题意知f(c)f(c)0,0,2c10得c.导数运算法则的综合应用例3已知抛物线yax2bxc通过点P(1,1),且在点Q(2,1)处与直线yx3相切,求实数a、b、c的值思路点拨题中涉及三个未知参数,题设中有三个独立的条件,因此可通过解方程组来确定参数a、b、c的值精解详析曲线yax2bxc过P(1,1)点,abc1.y2axb,当x2时,y4ab.4ab1.又曲线过Q(2,1)点,4a2bc

6、1.联立,解得a3,b11,c9.一点通利用导数求切线斜率是行之有效的方法,它适用于任何可导函数,解题时要充分运用这一条件,才能使问题迎刃而解解答本题常见的失误是不注意运用点Q(2,1)在曲线上这一关键的隐含条件6已知P,Q为抛物线x22y上两点,点P,Q的横坐标分别为4,2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为_解析:易知抛物线yx2上的点P(4,8),Q(2,2),且yx,则过点P的切线方程为y4x8,过点Q的切线方程为y2x2,联立两个方程解得交点A(1,4),所以点A的纵坐标是4.答案:47已知f(x)是一次函数,x2f(x)(2x1)f(x)1,求f(x)的解

7、析式解:由f(x)为一次函数可知f(x)为二次函数设f(x)ax2bxc(a0),则f(x)2axb.把f(x),f(x)代入方程x2f(x)(2x1)f(x)1中得:x2(2axb)(2x1)(ax2bxc)1,即(ab)x2(b2c)xc10.要使方程对任意x恒成立,则需有ab,b2c,c10,解得a2,b2,c1,所以f(x)2x22x1.1应用和、差、积、商的求导法则和常见函数的导数公式求导数时,在可能的情况下,应尽量少用甚至不用乘积的求导法则,应在求导之前,先利用代数、三角恒等变形对函数进行化简,然后再求导,这样可以减少运算量,提高运算速度,避免出错2对复杂函数求导,一般要遵循先化简

8、后求导的原则,但要注意化简过程中变换的等价性对应课时跟踪训练(四)一、填空题1(广东高考)曲线y5ex3 在点(0,2) 处的切线方程为_解析:由y5ex3得,y5ex,所以切线的斜率ky|x05,所以切线方程为y25(x0),即5xy20.答案:5xy202设f(x)xln x,若f(x0)2,则x0_.解析:f(x)ln xxln x1.f(x0)2,1ln x02,x0e.答案:e3函数f(x)excos x,x0,2,且f(x0)0,则x0_.解析:f(x)excos xexsin x,由f(x0)0,得ex0cos x0ex0sin x00,cos x0sin x0,即tan x01

9、.又x00,2,x0或.答案:或4(江西高考)若曲线yx1(R)在点(1,2)处的切线经过坐标原点,则_.解析:由题意yx1,在点(1,2)处的切线的斜率为k,又切线过坐标原点,所以2.答案:25曲线y在点(1,1)处的切线方程为_解析:y,当x1时,y1.切线方程为y1(x1),即xy20.答案:xy20二、解答题6求下列函数的导数:(1)ysin x3x2x;(2)y(1cos x)(2x2ex)解:(1)y(sin x3x2x)(sin x)(3x2)xcos x6x1.(2)y(1cos x)(2x2ex)(1cos x)(2x2ex)(1cos x)(2x2ex)sin x(2x2e

10、x)(1cos x)(4xex)ex(1cos xsin x)2x2sin x4x(1cos x)7设定义在(0,)上的函数f(x)axb(a0)(1)求f(x)的最小值;(2)若曲线yf(x)在点(1,f(1)处的切线方程为yx,求a,b的值解:(1)法一:由题设和基本不等式可知,f(x)axb2b,其中等号成立当且仅当ax1,即当x时,f(x)取最小值为2b.法二:f(x)的导数f(x)a,当x时,f(x)0,f(x)在上单调递增;当0x时,f(x)0,f(x)在上单调递减所以当x时,f(x)取最小值为2b.(2)由题设知,f(x)a,f(1)a,解得a2或a(不合题意,舍去)将a2代入f(1)ab,解得b1.所以a2,b1.8已知函数f(x)x32x2ax(xR,aR),在曲线yf(x)的所有切线中,有且仅有一条切线l与直线yx垂直求a的值和切线l的方程解:f(x)x32x2ax,f(x)x24xa.由题意可知,方程f(x)x24xa1有两个相等的实根164(a1)0,a3.f(x)x24x31.化为x24x40.解得切点横坐标为x2,f(2)82423.切线l的方程为y(1)(x2),即3x3y80.a3,切线l的方程为3x3y80.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3