ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:33.07KB ,
资源ID:738121      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-738121-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广西专用2022年高考数学一轮复习 考点规范练31 等比数列及其前n项和(含解析)新人教A版(文)..docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广西专用2022年高考数学一轮复习 考点规范练31 等比数列及其前n项和(含解析)新人教A版(文)..docx

1、考点规范练31等比数列及其前n项和基础巩固1.(2020四川德阳模拟)已知等比数列an中,a5=3,a4a7=45,则a7-a9a6-a7的值为()A.30B.25C.15D.10答案:A解析:设等比数列an的公比为q.已知a5=3,a4a7=45,则a4a7=a4a6q=a52q=45,解得q=5,所以a7-a9a6-a7=q-q31-q=q(1+q)=30.2.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起 ,每一个单音的频率与它的前一个单音的频率的比都等于12

2、2.若第一个单音的频率为f,则第八个单音的频率为()A.32fB.322fC.1225fD.1227f答案:D解析:由题意知,这十三个单音的频率构成首项为f,公比为122的等比数列,则第八个单音的频率为(122)7f=1227f.3.已知正项等比数列an满足a3=1,a5与32a4的等差中项为12,则a1的值为()A.4B.2C.12D.14答案:A解析:设公比为q.由题意,得a5+32a4=1,a3q2+32a3q=1,q2+32q=1,即2q2+3q-2=0,q=12或q=-2(舍去),故a1=a3q2=4.4.已知an为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7

3、B.5C.-5D.-7答案:D解析:an为等比数列,a5a6=a4a7=-8.联立a4+a7=2,a4a7=-8,可解得a4=4,a7=-2或a4=-2,a7=4,当a4=4,a7=-2时,q3=-12,故a1+a10=a4q3+a7q3=-7;当a4=-2,a7=4时,q3=-2,故a1+a10=a4q3+a7q3=-7.综上可知,a1+a10=-7.5.等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn=()A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)2答案:A解析:a2,a4,a8成等比数列,a42=a2a8,即(a1+6)2=(a1+2)(

4、a1+14),解得a1=2.Sn=na1+n(n-1)2d=2n+n2-n=n2+n=n(n+1).故选A.6.已知数列an为等比数列,首项a1=2,数列bn满足bn=log2an,且b2+b3+b4=9,则a5=()A.8B.16C.32D.64答案:C解析:由题意知bn为等差数列,因为b2+b3+b4=9,所以b3=3,因为b1=1,所以公差d=1,则bn=n,即n=log2an,故an=2n,于是a5=25=32.7.记Sn为等比数列an的前n项和.若a1=1,S3=34,则S4=.答案:58解析:设等比数列an的公比为q.S3=a1+a1q+a1q2=1+q+q2=34,即q2+q+1

5、4=0.解得q=-12.故S4=a1(1-q4)1-q=1-1241+12=58.8.设数列an的前n项和为Sn,若S2=4,an+1=2Sn+1,nN*,则a1=,S5=.答案:1121解析:由题意,可得a1+a2=4,a2=2a1+1,所以a1=1,a2=3.再由an+1=2Sn+1,an=2Sn-1+1(n2),得an+1-an=2an,即an+1=3an(n2).又因为a2=3a1,所以数列an是以1为首项,3为公比的等比数列.所以S5=1-351-3=121.9.(2020广西南宁二模)已知在数列an中,a1=2,且对于任意正整数m,n都有am+n=aman,则数列an的通项公式是.

6、答案:an=2n解析:在数列an中,a1=2,且对于任意正整数m,n都有am+n=aman,令m=1,得an+1=2an,则an是首项和公比均为2的等比数列,从而an=2n.10.已知数列an满足a1=1,nan+1=2(n+1)an.设bn=ann.(1)求b1,b2,b3;(2)判断数列bn是否为等比数列,并说明理由;(3)求an的通项公式.解:(1)由条件可得an+1=2(n+1)nan.将n=1代入得,a2=4a1,而a1=1,所以a2=4.将n=2代入得,a3=3a2,所以a3=12.从而b1=1,b2=2,b3=4.(2)bn是首项为1,公比为2的等比数列.由条件可得an+1n+1

7、=2ann,即bn+1=2bn,又b1=1,所以bn是首项为1,公比为2的等比数列.(3)由(2)可得ann=2n-1,所以an=n2n-1.11.已知an是公差为3的等差数列,数列bn满足b1=1,b2=13,anbn+1+bn+1=nbn.(1)求an的通项公式;(2)求bn的前n项和.解:(1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2.所以数列an是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)和anbn+1+bn+1=nbn得bn+1=bn3,因此bn是首项为1,公比为13的等比数列.记bn的前n项和为Sn,则Sn=1-13n1-13=32

8、-123n-1.12.已知数列an满足an=2an-1+1(n2),a4=15.(1)求a1,a2,a3;(2)判断数列an+1是否为等比数列,并说明理由;(3)求数列an的前n项和Sn.解:(1)由an=2an-1+1(n2)及a4=15知a4=2a3+1,解得a3=7,同理得a2=3,a1=1.(2)由an=2an-1+1(n2),知an+1=2an-1+2,即an+1=2(an-1+1),故an+1是以a1+1=2为首项,公比为2的等比数列.(3)an+1=(a1+1)2n-1,an=2n-1.Sn=a1+a2+a3+an=(21-1)+(22-1)+(23-1)+(2n-1)=(21+

9、22+23+2n)-n=2(1-2n)1-2-n=2n+1-2-n.能力提升13.若a,b是函数f(x)=x2-px+q(p0,q0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6B.7C.8D.9答案:D解析:a,b是函数f(x)=x2-px+q(p0,q0)的两个不同的零点,a+b=p,ab=q.p0,q0,a0,b0.又a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,2b=a-2,ab=4或2a=b-2,ab=4.解得a=4,b=1;解得a=1,b=4.p=a+b=5,q=14=4.p+q=9.故

10、选D.14.(2020宁夏银川一中四模)设数列an满足a1=2,a2=6,且an+2-2an+1+an=2.(1)a4=;(2)若x表示不超过x的最大整数,则2 020a1+2 020a2+2 020a2 020=.答案:(1)20(2)2 019解析:(1)由a1=2,a2=6,且an+2-2an+1+an=2,得a3-2a2+a1=a3-12+2=2,解得a3=12.又由a4-2a3+a2=a4-24+6=2,得a4=20.(2)由an+2-2an+1+an=2,得(an+2-an+1)-(an+1-an)=2,所以数列an+1-an为首项a2-a1=4,公差为2的等差数列,即an+1-a

11、n=4+2(n-1)=2(n+1).所以an=a1+(a2-a1)+(an-an-1)=2+4+6+2n=12n(2+2n)=n(n+1),n2.当n=1时,a1=12=2,满足上式.故an=n(n+1),从而1an=1n(n+1)=1n-1n+1,20201a1+1a2+1a2 020=20201-12+12-13+12 020-12 021=20201-12 021=2019+12021,所以2 020a1+2 020a2+2 020a2 020=2019.15.(2020山东淄博一模)已知一个等差数列an的前3项a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任意两个数不在

12、表的同一列.行第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的a1,a2,a3组合,并求数列an的通项公式;(2)记(1)中选择的an的前n项和为Sn,判断是否存在正整数k,使得a1,ak,Sk+2成等比数列,若存在,请求出k的值;若不存在,请说明理由.解:(1)由题意可知,有两种组合满足条件:a1=8,a2=12,a3=16,此时等差数列an,a1=8,d=4,所以其通项公式为an=8+4(n-1)=4n+4.a1=2,a2=4,a3=6,此时等差数列an,a1=2,d=2,所以其通项公式为an=2n.(2)若选择,Sn=n(8+4n+4)2=2n2+6n.则

13、Sk+2=2(k+2)2+6(k+2)=2k2+14k+20.若a1,ak,Sk+2成等比数列,则ak2=a1Sk+2,即(4k+4)2=8(2k2+14k+20),整理,得5k=-9,此方程无正整数解,故不存在正整数k,使得a1,ak,Sk+2成等比数列.若选择,Sn=n(2+2n)2=n2+n,则Sk+2=(k+2)2+(k+2)=k2+5k+6.若a1,ak,Sk+2成等比数列,则ak2=a1Sk+2,即(2k)2=2(k2+5k+6),整理得k2-5k-6=0,因为k为正整数,所以k=6.故存在正整数k=6,使得a1,ak,Sk+2成等比数列.高考预测16.已知等比数列bn,b1+b2=34,且b2+b3=38.(1)求数列bn的通项公式;(2)若数列ann是首项为b1,公差为b2的等差数列,求数列1an的前n项和.解:(1)设数列bn的公比为q,则b1+b1q=34,b1q+b1q2=38,解得b1=12,q=12,所以bn=12n.(2)由(1)知数列ann是首项为12,公差为14的等差数列,所以ann=12+(n-1)14=n+14,从而an=n2+n4.所以1an=4n(n+1)=41n-1n+1.故数列1an的前n项和Sn=411-12+12-13+1n-1n+1=41-1n+1=4nn+1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3