ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:385.50KB ,
资源ID:737688      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-737688-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新课标人教B版必修2模块综合测试(数学).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新课标人教B版必修2模块综合测试(数学).doc

1、高考资源网提供高考试题、高考模拟题,发布高考信息题本站投稿专用信箱:ks5u,来信请注明投稿,一经采纳,待遇从优必修二高中数学人教B版模块综合测试 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在某几何体的三视图中,主视图、左视图、俯视图是三个全等的圆,圆的半径为R,则这个几何体的体积是( )A.R3 B.R3 C.R3 D.解析:由题意,这个几何体是球,故体积为R3.答案:D2.在空间直角坐标系中,方程x2-4(y-1)2=0表示的图形是( )A.两个点 B.两条直线C.两个平面 D.一条直线和

2、一个平面解析:由原方程可得(x+2y-2)(x-2y+2)=0,x+2y-2=0或x-2y+2=0.答案:C3.长方体各面上的对角线所确定的平面个数是( )A.20 B.14 C.12 D.6解析:相对两平行平面中有两组平行对角线,可以确定两个平面,这样有6个平面.又因为每个顶点对应一个符合条件的平面,这样又有8个平面,共有14个平面.答案:B4.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是( )A.3x-2y+2=0 B.2x+3y+7=0C.3x-2y-12=0 D.2x+3y+8=0解:设(x0,y0)是直线2x+3y-6=0上任一点,其关于点(1,-1)的对称点的坐标是(

3、x,y),则2x0+3y0-6=0.(*)又由对称性知代入(*)式得2(2-x)+3(-2-y)-6=0,即2x+3y+8=0.答案:D5.与圆C:x2+(y+5)2=3相切,且纵截距和横截距相等的直线共有( )A.2条 B.3条 C.4条 D.6条解析:原点在圆C外,过原点的两条切线在坐标轴上的截距也是相等的;若切线不过原点,设为x+y=a,圆心为(0,-5),半径为,.a=-5.在两轴上截距相等、斜率为-1的直线又有两条,共有4条.答案:C6.(2006高考天津卷,文7)若l为一条直线,、为三个互不重合的平面,给出下面三个命题:,;,;l,l.其中正确的命题有( )A.0个 B.1个 C.

4、2个 D.3个解析:本题考查线面和面面的垂直平行垂直关系.中可由长方体的一角证明是错误的;易证明是正确的.答案:C7.(2006高考全国卷,理7文9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16 B.20 C.24 D.32解析:本题考查长方体和正四棱柱的关系以及球的表面积的计算.由题意可得该正四棱柱的底面面积为4,边长为2.因正四棱柱属于长方体,因此所求球的球心在该长方体的中心即球的直径为,根据球的表面积公式,可得球的表面积为24.答案:C8.将若干毫升水倒入底面半径为4 cm的圆柱形器皿中,量得水面高度为8 cm,若将这些水倒入轴截面是正三角形的倒

5、圆锥形器皿中,则水面的高度是( )A. B.6 C. D.解:设水面高度为h.由428=(h)2h,h=.故选C.答案:C9.已知点P(2,-3)、Q(3,2),直线ax-y+2=0与线段PQ相交,则a的取值范围是( )A.a B.aC.a0 D.a或a解析:直线ax-y+2=0可化为y=ax+2,斜率k=a,恒过定点A(0,2).如图,直线与线段PQ相交,0kkAP,即a0.答案:C10.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( )A.1个 B.2个 C.3个 D.4个解:圆心(3,3)到直线3x+4y-11=0的距离为d=2,圆的半径是3.圆上的点到

6、直线3x+4y-11=0的距离为1的点有3个.答案:C11.直线l与直线3x+4y-15=0垂直,与圆x2+y2-18x+45=0相切,则l的方程是( )A.4x-3y-6=0 B.4x-3y-66=0C.4x-3y-6=0或4x-3y-66=0 D.4x-3y-15=0解:由直线l与直线3x+4y-15=0垂直,则可设l的方程是4x-3y+b=0.由圆x2+y2-18x+45=0,知圆心O(9,0),半径r=6,=6,|36+b|=30.b=-6或b=-66.故l的方程为4x-3y-6=0或4x-3y-66=0.答案:C12.直线3x-2y+m=0和直线(m2-1)x+3y-3m+2=0的位

7、置关系是( )A.平行 B.重合 C.相交 D.不能确定解析:因为33-2(m2-1)=0,m无解,可得332(m2-1),即两直线斜率不相等,所以这两条直线不平行或重合,由两直线相交的条件,可得两直线相交.答案:C二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知A(-1,-2,1)、B(2,2,2),点P在z轴上,且d(P,A)=d(P,B),则点P的坐标为_.解:P在z轴上,设P点坐标为(0,0,z).又|PA|=|PB|,利用距离公式得z=3.答案:(0,0,3)14.若P在坐标平面xOy内,A点坐标为(0,0,4),且d(P,A)=5,则点P组成的曲线

8、为_.解析:考查两点距离公式的应用和探究问题的能力.设P(x,y,0),则d(P,A)=,因为|PA|=5,所以x2+y2+16=25,即x2+y2=9.所以P点在xOy坐标面上形成一个以(0,0)为圆心,以3为半径的圆.答案:以(0,0)为圆心,以3为半径的圆15.如图1,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是_.图1解析:可以考虑用一个与原来全等的几何体,倒过来拼接到原几何体上,得到一个底面半径为r,母线长为(a+b)的圆柱,其体积为r2(a+b),故所求体积为r2(a+b).答案:r2(a+b)16.过圆x2+y2-6

9、x+4y-3=0的圆心,且平行于x+2y+11=0的直线方程是_.解:圆x2+y2-6x+4y-3=0的圆心为(3,-2).设所求直线斜率为k,则k=.方程为y+2=(x-3),即x+2y+1=0.答案:x+2y+1=0三、解答题(共74分)17.(本小题12分)如图2,在正方体ABCD-A1B1C1D1中,求证:图2(1)A1D平面CB1D1;(2)平面A1BD平面CB1D1.证明:(1)A1B1CD且A1B1=CD,四边形A1B1CD是平行四边形,故A1DB1C.又B1C平面CB1D1且A1D平面CB1D1,A1D平面CB1D1.(2)由(1)A1D平面CB1D1,同理可得A1B平面CB1

10、D1,又A1DA1B=A1,且A1D和A1B都在平面A1BD内,所以平面A1BD平面CB1D1.18.(本小题12分)如图3,在直三棱柱ABCA1B1C1中,AB1BC1,AB=CC1=1,BC=2.图3(1)求证:A1C1AB;(2)求点B1到平面ABC1的距离.(1)证明:连结A1B,则A1BAB1.又AB1BC1,AB1平面A1BC1.AB1A1C1.又A1C1BB1,A1C1平面ABB1.A1C1AB.(2)解:由(1)知ABAC,ABAC1,又AB=1,BC=2,AC=,AC1=2.=1.设所求距离为d,.SABC1d=A1C1.1d=.d=.19.(本小题12分)设圆上的点A(2,

11、3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为,求圆的方程.解:设圆的方程为(x-a)2+(y-b)2=r2.圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,圆心在x+2y=0上.a+2b=0. 圆被直线截得的弦长为,()2+()2=r2. 由点A(2,3)在圆上,得(2-a)2+(3-b)2=r2. 联立,解得圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.20.(本小题12分)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB

12、被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45时,求弦AB的长.解:(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,lPC,直线l的方程为y-2=(x-2),即x+2y-6=0.(3)当直线l的倾斜角为45时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.21.(本小题12分)如图4,在棱长为a的正方体ABCDA1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方

13、体的下底面相交于直线l;图4(1)画出直线l;(2)设lA1B1=P,求PB1的长;(3)求D到l的距离.解:(1)连结DM并延长交D1A1的延长线于Q.连结NQ,则NQ即为所求的直线l.(2)设QNA1B1=P,A1MQMAD,A1Q=AD=A1D1,A1是QD1的中点.A1P=D1N=.PB1=a.(3)作D1Hl于H,连结DH,可证明l平面DD1H,则DHl,则DH的长就是D到l的距离.在RtQD1N中,两直角边D1N=,D1Q=2a,斜边QN=,D1HQN=D1ND1Q,即D1H=,DH=,D1到l的距离为.22.(本小题14分)设有半径为3 km的圆形村落,A、B两人同时从村落中心出

14、发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇,设A、B两人速度一定,其速度比为31,问两人在何处相遇.解:如图,建立平面直角坐标系,由题意可设A、B两人速度分别为3V千米/小时、V千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇,则P、Q两点坐标为(3Vx0,0)、(0,Vx0+y0).由|OP|2+|OQ|2=|PQ|2,知(3Vx0)2+(Vx0+y0)2=(3Vy0)2,即(x0+y0)(5x0-4y0)=0.x0+y00,5x0=4y0. 将代入kPQ=,得kPQ=.又已知PQ与圆O相切,直线PQ在y轴上的截距就是两人相遇的位置.设直线y=x+b与圆O:x2+y2=9相切,则有=3,b=.共7页第7页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3