ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:56.28KB ,
资源ID:737108      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-737108-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广西专用2022年高考数学一轮复习 单元质检十一 概率(含解析)新人教A版(文).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广西专用2022年高考数学一轮复习 单元质检十一 概率(含解析)新人教A版(文).docx

1、单元质检十一概率(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7答案:B解析:设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.2.从装有3个红球、2个白球的袋中任取3个球,若事件A=“所取的3个球中至少有1个白球”,则事件A的对立事件是()A.1个白球、2个红球B.2个白球、1个红球C.3个都是红球D.至少有1个红球答案:C解析:事件A=“所取的3个球中至少有1个白球”对立事件是所取的3

2、个球中没有白球,即所取的3个球都是红球.故选C.3.现有4本不同的书平均分给两名同学,则语文书、数学书恰好分给一名同学的概率为()A.12B.13C.16D.112答案:B解析:4本不同的书平均分给两名同学的基本情况有6种,语文书、数学书恰好分给一名同学的基本情况有2种,故所求概率为13.4.(2020广西柳州模拟)在区间1,10上任取一个整数x,则满足ln x1的概率为()A.15B.45C.10-e9D.19答案:B解析:由已知区间1,10上任取一个整数x,共有10种可能,而满足lnx1,即xe的有3,4,5,6,7,8,9,10,共8种可能,因此满足lnx1的概率是P=810=45.故选

3、B.5.七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.一个用七巧板拼成的正方形如图所示,若在此正方形中任取一点,则此点取自阴影部分的概率是()A.14B.18C.38D.316答案:B解析:不妨设小正方形的边长为1,则两个最小的等腰直角三角形的边长为1,1,2,左上角的等腰直角三角形的边长为2,2,2,两个最大的等腰直角三角形的边长为2,2,22,即大正方形的边长为22,故所求概率P=1-122+1+1+228=18.6.已知P是ABC所在平面内一点,4PB+5PC+3PA=0.现将一粒红豆随机撒在ABC内,则红豆落在PBC内的概率是(

4、)A.14B.13C.512D.12答案:A解析:依题意,易知点P位于ABC内,作PB1=4PB,PC1=5PC,PA1=3PA,则PB1+PC1+PA1=0,点P是A1B1C1的重心.SPB1C1=SPC1A1=SPA1B1,而SPBC=1415SPB1C1,SPCA=1315SPC1A1,SPAB=1314SPA1B1,因此SPBCSPCASPAB=345,即SPBCSPBC+SPCA+SPAB=33+4+5=14,即红豆落在PBC内的概率等于14,故选A.二、填空题(本大题共2小题,每小题7分,共14分)7.已知实数x2,30,如图,执行该程序框图,则输出的x不小于103的概率是.答案:

5、914解析:已知实数x2,30,经过第一次循环得到x=2x+1,n=2;经过第二次循环得到x=2(2x+1)+1,n=3;经过第三次循环得到x=22(2x+1)+1+1,n=4;此时退出循环,输出的值为8x+7.令8x+7103得x12.由几何概型可知输出的x不小于103的概率为30-1230-2=914.8.两名教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两名教师批改成绩之差的绝对值不超过2的概率为.答案:0.44解析:用(x,y)表示两名教师的批改成绩,则(x,y)的所有可能情况为1010=100(种).当x=50时,y可取50,51,52,共3种可能

6、;当x=51时,y可取50,51,52,53,共4种可能;当x=52,53,54,55,56,57时,y的取法均有5种,共30种可能;当x=58时,y可取56,57,58,59,共4种可能;当x=59时,y可取57,58,59,共3种可能.综上可得,两名教师批改成绩之差的绝对值不超过2的情况有44种.由古典概型的概率公式可得,所求概率为P=44100=0.44.三、解答题(本大题共3小题,共44分)9.(14分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取

7、多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.试用所给字母列举出所有可能的抽取结果;设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为322,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人、2人、2人.(2)从抽出的7名同学中随机抽取2名同学的所有可能结果为A,B,A,C,A,D,A,E,A,F,A,G,B,C,B,D,B,E,B,F,B,G,C,D,C,E,C,F,C,G,D,E,D,F,D,G,E,F,E,G,

8、F,G,共21种.由,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为A,B,A,C,B,C,D,E,F,G,共5种.所以,事件M发生的概率P(M)=521.10.(15分)某保险公司利用简单随机抽样的方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额/元01 0002 0003 0004 000车辆数/辆500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为

9、4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.因为投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.11000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2120=2

10、4辆.所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.11.(15分)(2020吉林省吉林模拟)2020年5月7日吉林市新增本地新冠肺炎确诊病例1例,随后几天随着疫情形势的严峻,为进一步强化社区封闭措施,城区以居民小区为单位,全面实行封闭管理.为了做好扫码、登记、测温等工作,许多志愿者积极承担了此项任务,现对吉林市丰满区某社区服务情况,采用按性别分层抽样的方法进行调查,已知某校19届毕业大学生共960人,其中男生560人,从毕业大学生中抽取了容量为n的样本,得到一天参加社区服务的时间统计数据如表所示:性别服务时间服务时间超过4小时服

11、务时间不超过4小时男208女12m(1)求m,n;(2)将下面表格补充完整,并判断能否有95%的把握认为该校学生一天参加社区服务时间是否超过4小时与性别有关?性别服务时间总计服务时间超过4小时服务时间不超过4小时男208女12m总计(3)以样本中大学生参加社区服务时间超过4小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一天参加社区服务时间超过4小时的人数.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(K2k0)0.1000.0500.2500.0100.0050.001k02.7063.8415.0246.6357.87910.828解:(1)由已知,得该校19届毕业大学生有女生400人,故12+m20+8=400560,解得m=8,即n=20+8+12+8=48.(2)根据题意填写列联表如下:性别服务时间总计服务时间超过4小时服务时间不超过4小时男20828女12820总计321648由表中数据,计算K2=48(208-812)228203216=24350.68573.841.故没有95%的把握认为该校学生一天参加社区服务时间是否超过4小时与性别有关.(3)根据以上数据,计算学生一天参加社区服务时间超过4小时的概率为P=3248=23,因此估计这6名学生中一天参加社区服务时间超过4小时的人数是4.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3