1、第2课时 等边三角形的性质1进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;2学习等边三角形的性质,并能够运用其解决问题(重点、难点)一、情境导入我们欣赏下列两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?二、合作探究探究点一:等腰三角形两底角的平分线(两腰上的高、中线)的相关性质 如图,在ABC中,ABAC,CDAB于点D,BEAC于点E,求证:DEBC.证明:因为ABAC,所以ABCACB.又因为CDAB于点D,BEAC于点E,所以AEBADC90,所以ABEACD,所以ABCABEACBACD,所以
2、EBCDCB.在BEC与CDB中,所以BECCDB,所以BDCE,所以ABBDACCE,即ADAE,所以ADEAED.又因为A是ADE和ABC的顶角,所以ADEABC,所以DEBC.方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等探究点二:等边三角形的相关性质【类型一】 利用等边三角形的性质求角度 如图,ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE.若ABE40,BEDE,求CED的度数解析:因为ABC三个内角为60,ABE40,求出EBC的度数,因为BEDE,所以得到EBCD,求出D的度数,利用外角性质即可求出CED的度数解:ABC是等边三
3、角形,ABCACB60,ABE40,EBCABCABE604020.BEDE,DEBC20,CEDACBD40.方法总结:等边三角形是特殊的三角形,它的三个内角都是60,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握【类型二】 利用等边三角形的性质证明线段相等 如图:已知等边ABC中,D是AC的中点,E是BC延长线上的一点,且CECD,DMBC,垂足为M,求证:BMEM.解析:要证BMEM,由题意证BDMEDM即可证明:连接BD,在等边ABC中,D是AC的中点,DBCABC6030,ACB60.CECD,CDEE.ACBCDEE,E30,DBCE30.DMBC,DMBDME90,在D
4、MB和DME中,DMEDMB.BMEM.方法总结:证明线段相等可利用三角形全等得到还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形【类型三】 等边三角形的性质与全等三角形的综合运用 ABC为正三角形,点M是边BC上任意一点,点N是边CA上任意一点,且BMCN,BN与AM相交于Q点,求BQM的度数解析:先根据已知条件利用SAS判定ABMBCN,再根据全等三角形的性质求得AQNABC60.解:ABC为正三角形,ABCCBAC60,ABBC.在AMB和BNC中,AMBBNC(SAS),BAMCBN,BQMABQBAMABQCBNABC60.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等三、板书设计1等腰三角形两底角的平分线(两腰上的高、中线)的相关性质等腰三角形两底角的平分线相等;等腰三角形两腰上的高相等;等腰三角形两腰上的中线相等2等边三角形的性质等边三角形的三个内角都相等,并且每个角都等于60.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形学习等边三角形的定义、性质让学生在探索图形特征以及相关结论的活动中,进一步培养空间观念,锻炼思维能力让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.