ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:1.57MB ,
资源ID:734114      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-734114-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》山东省临沂第一中学2019-2020学年高二下学期第二阶段性(期中考试)考试数学试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》山东省临沂第一中学2019-2020学年高二下学期第二阶段性(期中考试)考试数学试题 WORD版含解析.doc

1、2018级高二下学期第二次阶段性测试一数学一、单项选择题:本题共8小题,每小题5分,共40分1.已知全集UR,集合Ax|x2x60,Bx|0,那么集合A(UB)()A. x|2x4B. x|x3或x4C. x|2x1D. x|1x3【答案】D【解析】依题意Ax|2x3,Bx|x1或x4,故UBx|1x4,故A(UB)x|1x3,故选D.2.一个等差数列共有项,若前项的和为100,后项的和为200,则中间项的和为( )A. 75B. 100C. 50D. 125【答案】A【解析】【分析】利用等差数列的性质,成等差数列,建立方程,进行求解【详解】解:设等差数列前项的和为,由等差数列的性质可得,中间

2、的项的和可设为,后项的和设为,由题意得,解得,故中间的项的和为75,故选:A【点睛】本题使用了等差数列的一个重要性质,即等差数列的前项和为,则,成等差数列,属于中档题3.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F,若,则A. B. C. D. 【答案】B【解析】【分析】利用平面几何知识求解【详解】如图,可知=,选B.【点睛】本题考查向量的运算及其几何意义,同时要注意利用平面几何知识的应用,4.在等差数列中,若(),则数列的最大值是( )A. B. C. 1D. 3【答案】D【解析】【分析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单

3、调性可知,当时, 取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.5.在古装电视剧知否中,甲乙两人进行一种投壶比赛,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为,投中“贯耳”的概率为,投中“散射”的

4、概率为,投中“双耳”的概率为,投中“依竿”的概率为,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个“贯耳”,乙投了个“双耳”,则三场比赛结束时,甲获胜的概率为( )A. B. C. D. 【答案】D【解析】【分析】由题意列出分布列,根据相互独立事件的概率计算公式计算可得.【详解】解:由题可知筹数2456100甲要想贏得比赛,在第三场比赛中,比乙至少多得三筹.甲得“四筹”,乙得“零筹”,甲可赢,此种情况发生的概率;甲得“五筹”,乙得“零筹”或“两筹”,甲可赢,此种情况发生的概率;甲得“六筹”,乙得“零筹”或“两筹”,甲可赢,此种情况发生的概率;甲得“十筹”,乙得

5、“零筹”或“两筹”“四筹”“五筹”“六筹”,甲都可蠃,此种情况发生的概率.故甲获胜的概率.故选:【点睛】本题考查相互独立事件的概率公式,属于中档题.6.如图,在中,点是线段上两个动点,且 ,则的最小值为( )A. B. C. D. 【答案】D【解析】【分析】根据题意求出x,y满足的等式,然后利用基本不等式中“1”的代换,求解最小值【详解】如图可知x,y均为正,设,共线, ,则,则的最小值为,故选D.【点睛】平面向量与基本不等式综合题目,考察基本不等式中“1”的代换,求解代数式最值问题7.若存在,使不等式成立,则实数取值范围是( )A. B. C. D. 【答案】C【解析】【分析】令,将问题等价

6、转化为,然后讨论的最大值,从而求出的取值范围.【详解】令,对称轴方程为,若存在,使不等式成立,等价于,当时,即,解得,因为,所以;当时,即,解得,因为,所以;因为,所以.故选C.【点睛】主要考查了一元二次不等式存在性问题,属于中档题.这类型问题关键是等价转化为最值问题,通过讨论对应二次函数最值的情况,从而求出参数范围.8.已知、是平面向量,是单位向量若非零向量与的夹角为,向量满足,则的最小值是( )A. B. C. 2D. 【答案】A【解析】【分析】先确定向量、所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【详解】设,则由得,由得因此,的最小值为圆心到直线的距离减去

7、半径1,为选A.【点睛】以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.二、多项选择题:本题共4小题,每小题5分,共20分全部选对的得5分,部分选对的得3分,有选错的得0分9.下列命题中是真命题的是( )A. “”是“”的充分不必要条件;B. 命题“,都有”的否定是“,使得”;C. 数据,的平均数为,则数据,的平均数是6;D. 若随机变量服从正态分布,则【答案】ABD【解析】【分析】对各个选项进行逐一判断其真假即可得到答案.【详解】A.

8、当 “”时,有“”成立,反之当“”时,“或”,所以不成立.故“”是“”的充分不必要条件,故正确.B. 根据全称命题的否定是特称命题,则命题“,都有”的否定是“,使得”,故正确.C. 数据,的平均数为,则数据,的平均数是7,所以错误.D. 若随机变量服从正态分布,则根据正态曲线的对称性可得故正确.故选:ABD【点睛】本题考查命题真假的判断,考查充分不必要条件的判断,全称命题的否定的书写,正态分布中求概率,属于中档题.10.在某次高中学科知识竞赛中,对4000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为,60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则

9、下列说法中正确的是( )A. 成绩在的考生人数最多B. 不及格的考生人数为1000C. 考生竞赛成绩的平均分约为70.5分D. 考生竞赛成绩的中位数为75分【答案】ABC【解析】【分析】因为成绩出现在70,80的频率最大,故A正确;不及格考生数为10(0.010+0.015)40001000,故B正确;根据频率分布直方图估计考试的平均分为70.5,C正确;估计中位数为71.67,D错误【详解】由频率分布直方图可得,成绩在的频率最高,因此考生人数最多,故A正确;成绩在的频率为,因此,不及格的人数为,故B正确;考生竞赛成绩的平均分约为,故C正确;因为成绩在的频率为0.45,在的频率为0.3,所以中

10、位数为,故D错误.故选ABC.【点睛】本题考查了频率分布直方图,以及用频率分布直方图估计样本的平均数与中位数等,考查计算能力属于基础题11.下列命题中真命题是( )A. 已知实数,满足,则B. 的最小值为4C. 如果,那么D. 若,则不等式一定成立【答案】ACD【解析】【分析】利用作差法可以判断A,C选项,利用函数的单调性可判断B选项,利用不等式的基本性质可判断D选项.【详解】A.,则,由,两式相减得:所以,则,故正确.B. 设,则函数在上单调递减,则其最小值为5,故不正确.C. ,则,则么,故正确.D. 若,则,所以,由不等式的性质有,故正确.故选:ACD【点睛】本题考查作差法比较大小,利用

11、函数单调性求最值和不等式性质,属于中档题.12.给定数集,若对于任意,有,且,则称集合为闭集合,则下列说法中不正确的是( )A. 集合为闭集合B. 正整数集是闭集合C. 集合为闭集合D. 若集合,为闭集合,则为闭集合【答案】ABD【解析】【分析】根据集合为闭集合的定义,对选项进行逐一判断,可得出答案.【详解】A. 当集合时,而,所以集合不为闭集合.B.设是任意的两个正整数,当时,不是正整数, 所以正整数集不为闭集合.C当时,设则,所以集合是闭集合.D .设,由C可知,集合,为闭集合,而,此时不为闭集合.所以说法中不正确的是ABD故选:ABD【点睛】本题考查集合中的新定义问题,考查分析问题、解决

12、问题的能力,属于 中档题.三、填空题:本题共4小题,每小题5分,共20分13.下列说法中正确的是_.(填序号)若,其中,则必有;若一个数是实数,则其虚部不存在;若,则在复平面内对应的点位于第一象限.【答案】【解析】【分析】根据已知可得,虚数,利用复数相等的概念,可判断的正误;利用虚数不能比大小,可判断的正误;由实数的虚部为0,可判断的正误;由,知,可判断的正误.【详解】对于,即虚数,所以不成立,故错误;对于,若两个复数不全是实数,则不能比大小,由于均为虚数,故不能比大小,故错误;对于,若一个数是实数,则其虚部存在,为0,故错误;对于,若,则,在复平面内对应点为,在第一象限,故正确.故答案为:.

13、【点睛】本题考查命题的真假判断与应用,着重考查复数的概念和应用,熟练掌握复数概念是解题的关键,属于基础题.14.的展开式中,常数项为_;系数最大的项是_.【答案】 (1). (2). 【解析】【分析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,因此,展开式中系数最大的项为.故答案为:;.【点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.15.已知数列满足,设

14、前项和为,则_,_【答案】 (1). (2). 1010【解析】【分析】由先求出前几项,归纳出数列的周期,从而得出答案.【详解】由,有,则数列是以3为周期的数列.又,所以,故答案为:(1). (2). 1010【点睛】本题考查数列周期性,主要是通过计算前几项得出数列的周期,属于中档题.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有_种不同的选法(用数字作答)【答案】660【解析】【详解】第一类,先选女男,有种,这人选人作为队长和副队有种,故有 种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共

15、有种,故答案为.四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.命题:不等式的解集是命题:不等式在内恒成立,若和一真一假,求的取值范围【答案】【解析】分析】先分别求出当命题,命题为真命题时,参数的范围,然后由和一真一假,分真假,假真求解的范围.【详解】命题:不等式的解集是为真命题时.,解不等式得所以所以命题为真命题时, 命题:不等式在内恒成立因为,当且仅当时“=”成立所以命题为真命题时,因为,一真一假当真假时有当假真时有综上所述:【点睛】本题考查根据复合命题的真假求参数的范围和不等式恒成立问题,属于中档题.18.已知,.(1)求与的夹角和的值;(2)设,若与共线,

16、求实数m的值.【答案】(1)与的夹角为,;(2).【解析】【分析】(1)根据求出,根据数量积关系求出夹角,求出模长;(2)根据共线定理必存在使得:,求解参数.【详解】(1),所以,所以与的夹角为,;(2)由(1)可得:与不共线,若与共线,则必存在使得:,所以,得.【点睛】此题考查向量的数量积运算,根据数量积关系求向量夹角和模长,利用平面向量基本定理结合向量共线求参数的值.19.在公比大于的等比数列中,且、成等差数列.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】【分析】(1)设等比数列的公比为,则,根据题中条件求得的值,进而可求得数列的通项公式;(2)求得,

17、利用裂项相消法可求得.【详解】(1)设等比数列的公比为,则,因为、成等差数列,所以.即,整理得,解得(舍去)或.故;(2)由(1)得,则.故.【点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.20.已知数列的前项和满足,.(1)求证数列为等比数列,并求关于的表达式;(2)若,求数列的前项和.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据题意,用递推公式表示,利用递推关系及下标缩放即可求得与之间的关系,即可证明数列为等比数列;根据等比数列的通项公式即可求得;(2)根据(1)中所求,利用错位相减法求前项和即可.【详解】(1)由题可知,即.当时,得,

18、当时,得,即,所以所以数列是首项为2,公比为2的等比数列,所以,故(2)由(1)知,则,两式相减得所以.【点睛】本题考查利用递推公式求数列的通项公式以及证明数列的类型,涉及错位相减法求数列的前项和,属综合基础题.21.新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把

19、握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.【答案】(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】【分析】(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率

20、,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.22.2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊

21、断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的

22、真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111()当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?()2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.539019385

23、764031525154700100150225338507【答案】(1)适宜(2)(3)()回归方程可靠()防护措施有效【解析】【分析】(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.(3)()利用表中数据,计算出误差即可判断回归方程可靠;()当时,与真实值作比较即可判断有效.【详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,;(3)()时,当时,当时,所以(2)的回归方程可靠:()当时,10150远大于7111,所以防护措施有效.【点睛】本题考查了函数模型的应用,在求非线性回归方程时,现将非线性的化为线性的,考查了误差的计算以及用函数模型分析数据,属于基础题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3