ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:431KB ,
资源ID:733847      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-733847-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014年高考数学二轮复习素材:专题02分类讨论思想.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014年高考数学二轮复习素材:专题02分类讨论思想.doc

1、【专题二】分类讨论思想【考情分析】分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略.分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。分类讨论是每年高考必考的内容,预测2011年高考对本专

2、题的考察为:将有一道中档或中档偏上的题目,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由求等。【知识交汇】分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。1分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则。有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:(1)涉及的数学概念是分类讨论的;如绝对值|a|的定义分a0、a0、a

3、2时分a0、a0和a0) ,圆半径|ON|=1,|MN|2=|MO|2-|ON|2=|MO|21,设点M的坐标为(x,y),则,整理得:,经检验,坐标适合这个方程的点都属于集合P,故这个方程为所求的轨迹方程。当=1时,方程化为 ,它表示一条直线,该直线与x轴垂直且交x轴于点;当1时,方程化为,它表示圆,该圆圆心的坐标为 ,半径为。点评:本题在求出轨迹方程之后,在判定为何曲线时,因参数引起了分类讨论:一些问题中的数学表达式中因含有会导致不同结论的参数,从而需对参数分情况讨论,求得问题的结果。题型4:不等式中分类讨论问题例7解不等式0 (a为常数,a)分析:含参数的不等式,参数a决定了2a1的符号

4、和两根4a、6a的大小,故对参数a分四种情况a0、a0、a0、a0时,a; 4a0 。所以分以下四种情况讨论:当a0时,(x4a)(x6a)0,解得:x6a;当a0时,x0,解得:x0;当a0,解得: x4a;当a时,(x4a)(x6a)0,解得: 6ax0时,x6a;当a0时,x0;当a0时,x4a;当a时,6ax0或a0,因为这两种情形下,不等式解集形式是不同的;不等式的解是在两根之外,还是在两根之间。而确定这一点之后,又会遇到1与谁大谁小的问题,因而又需作一次分类讨论。故而解题时,需要作三级分类。题型5:数列中分类讨论问题例9(2011天津理20)已知数列与满足:, ,且()求的值;()

5、设,证明:是等比数列;(III)设证明:本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(I)解:由 可得又(II)证明:对任意,得将代入,可得,即又因此是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意点评:数列证明中的数学归纳法是一个需要牢记的分类递进推理过程,证明格式相对严格、规范。例10(2010四川理数)已知数列an满足a10,a22,且对任意m、nN*都有a2m1a2n12amn

6、12(mn)2()求a3,a5;()设bna2n1a2n1(nN*),证明:bn是等差数列;()设cn(an+1an)qn1(q0,nN*),求数列cn的前n项和Sn。解:(1)由题意,零m2,n1,可得a32a2a126,再令m3,n1,可得a52a3a1820。(2)当nN *时,由已知(以n2代替m)可得:a2n3a2n12a2n18。于是a2(n1)1a2(n1)1(a2n1a2n1)8,即 bn1bn8。所以bn是公差为8的等差数列(3)由(1)(2)解答可知bn是首项为b1a3a16,公差为8的等差数列则bn8n2,即a2n+=1a2n18n2另由已知(令m1)可得:an-(n1)

7、2.那么an1an2n12n12n于是cn2nqn1.当q1时,Sn2462nn(n1)当q1时,Sn2q04q16q22nqn1.两边同乘以q,可得 qSn2q14q26q32nqn.上述两式相减得 (1q)Sn2(1qq2qn1)2nqn22nqn2,所以Sn2综上所述,Sn。点评:等比数列的求和公式只适合于,特别公比中含参数时,需要分类讨论。题型6:三角函数与三角形中分类讨论问题例11解析:, ; ;这与三角形的内角和为180相矛盾。, ,因此,只要根据已知条件,求出cosA,sinB即可得cosC的值。但是由sinA求cosA时,是一解还是两解?这一点需经过讨论才能确定,故解本题时要分

8、类讨论。对角A进行分类。例12若函数f(x)=a+bcosx+csinx的图象经过点(0,1)和时,|f(x)|2恒成立,求实数a的取值范围。解析:f(x)经过点(0,1)和f(x)=a+(1-a)cosx+(1-a)sinx=a+(1-a)(sinx+cosx),。(1)a0,要使-2f(x)2,恒成立,只要,即。;(2)a=1时,(3)a1时,1-a8,a=8,a8,根据条件,逐一讨论,使问题得以解决【思维总结】分类讨论是一种重要的数学思想,也是一种重要的解题策略,它可以将整体化为局部,将复杂问题化为单一问题,以便于“各个击破”。但由于分类讨论一般过程较为冗长,叙述较为烦琐,且极易在完备上

9、造成失误,因此它并非一定是解决问题的上策或良策,我们提倡在熟悉和掌握分类思想的同时,要注意克服思维定势,处理好“分”与“合”,“局部”与“整体”之间的辨证统一关系,充分挖掘求解问题中潜在的特殊性与简单性,尽可能地简化或避免分类讨论。下面结合一些实例,谈谈简化分类讨论的常用策略。消去参数、整体换元、反客为主、补集分析、整体变形、借助图解。 1对于分类讨论题不要急于直接进行分类讨论,首先应认真审查题目的特点,考虑是否可以你用合适的公式、法则,能否进行某中变形,可否改变常规的思维方式和解题策略,即能否消除或掩盖“讨论基因”,若能,则可以避免进行繁杂的分类讨论;若不能,可否先作某些等价变换,使讨论推迟

10、得来,这种延迟讨论有时也是一种简化和一种进步。当然,有些问题,你通过了一番试验,仍无法作到完全回避讨论或延迟讨论,这可能是“不可避免的直接讨论型”问题,这是我们就应遵循分类讨论的原则去攻克它。2实际应用题(排列组合)中分类讨论往往带有隐蔽性,理解题意,抓住限制条件,准确把握分类对象和标准是解决问题的关键。如果发现多种分类途径,则应加强比较,从中选择最为合理的分类途径。3分类的原则是不重复不遗漏,即将讨论的对象分为若干类时,其并集为全集,两两的交集为空集。4分类对象,即使问题变换不定的变动因素;分类的标准,即使变换不定的问题转化为相对稳定问题的分类界值,分类对象和分类标准的确定,应通过识别问题情景来完成。5应该注意的是,在运用时,不要盲目或机械地进行分类讨论,有的题目虽然含有分类因素,但不要急于分类讨论,要首先对问题作深入的研究,充分挖掘题目的已知量与未知量之间的关系,寻求正确的解题策略,则可以简化分类讨论的步骤或避免不必要的分类讨论,使解题更简单。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3