1、高考资源网() 您身边的高考专家25常考的递推公式问题的破解方略1在数列an中,a11,anan1an1(1)n(n2,nN*),则的值是_答案解析由已知得a21(1)22,a3a2a2(1)3,a3,a4(1)4,a43,3a53(1)5,a5,.2学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择调查资料表明,凡是在星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A种菜用an,bn分别表示在第n个星期的星期一选A种菜和选B种菜的人数,如果a1300,则a10_.答案300解析依题意,得消去bn,得an1an150.由a1300,得a2300
2、;由a2300,得a3300;从而得a10300.3已知f(x)log21,anf()f()f(),n为正整数,则a2 015_.答案2 014解析因为f(x)log21,所以f(x)f(1x)log21log212.所以f()f()2,f()f()2,f()f()2,由倒序相加,得2an2(n1),ann1,所以a2 0152 01512 014.4在正项数列an中,a12,an12an35n,则数列an的通项公式为_答案an5n32n1解析在递推公式an12an35n的两边同时除以5n1,得,令bn,则式变为bn1bn,即bn11(bn1),所以数列bn1是等比数列,其首项为b111,公比
3、为.所以bn1()()n1,即bn1()n1,故an5n32n1.5数列an的前n项和Sn满足2SnSn1an(n2,nN*),且a11,则数列an的通项公式为_答案an解析当n2时,anSnSn1,则2SnSn1SnSn1,即2,又1,故是首项为1,公差为2的等差数列,则1(n1)(2)2n3,所以Sn.当n2时,anSnSn1,验证a11不满足,故所求通项公式an6设函数f(x)a1a2xa3x2anxn1,f(0),数列an满足f(1)n2an(nN*),则数列an的通项an_.答案解析由f(0),得a1,由f(1)n2an(nN*),得Sna1a2ann2an.当n2时,anSnSn1
4、n2an(n1)2an1,整理得,所以ana1,显然a1也符合即an的通项为an.7若f(n)为n21(nN*)的各位数字之和,如62137,f(6)3710,f1(n)f(n),f2(n)f(f1(n),fk1(n)f(fk(n),kN*,则f2 014(4)_.答案8解析因为42117,f(4)178,则f1(4)f(4)8,f2(4)f(f1(4)f(8)11,f3(4)f(f2(4)f(11)5,f4(4)f(f3(4)f(5)8,所以fk1(n)f(fk(n)为周期数列可得f2 014(4)8.8数列an,bn满足anln n,bn,则数列anbn中第_项最大答案3解析设函数f(x)ln x,则f(x),令f(x)0,得xe.分析知函数f(x)在(0,e上是增函数,在e,)上是减函数,又f(2)ln 2ln 0,于是(a2n1a2n)(a2na2n1)0.但,所以|a2n1a2n|0,因此a2na2n1()2n1.因为a2n是递减数列,同理可得a2n1a2n0,故a2n1a2n()2n.由可知,an1an.于是ana1(a2a1)(a3a2)(anan1)11.故数列an的通项公式为an.- 6 - 版权所有高考资源网