ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:200KB ,
资源ID:733116      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-733116-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年新教材高中数学 课时素养评价(三十一)第二章 平面解析几何 2.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年新教材高中数学 课时素养评价(三十一)第二章 平面解析几何 2.doc

1、三十一抛物线方程及性质的应用 (15分钟30分)1过点P(0,1)与抛物线y2x有且只有一个交点的直线有()A4条 B3条 C2条 D1条【解析】选B.当直线垂直于x轴时,满足条件的直线有1条;当直线不垂直于x轴时,满足条件的直线有2条2与直线2xy40平行的抛物线yx2的切线方程为()A2xy30 B2xy30C2xy10 D2xy10【解析】选D.设切线方程为2xym0,与yx2联立得x22xm0,44m0,m1,即切线方程为2xy10.3等腰直角三角形AOB内接于抛物线y22px(p0),O为抛物线的顶点,OAOB,则AOB的面积是()A8p2 B4p2C2p2 Dp2【解析】选B.因为

2、抛物线的对称轴为x轴,内接AOB为等腰直角三角形,所以由抛物线的对称性,知直线AB与抛物线的对称轴垂直,从而直线OA与x轴的夹角为45.由方程组得或所以易得A,B两点的坐标分别为(2p,2p)和(2p,2p).所以|AB|4p,所以SAOB4p2p4p2.4(2020全国卷)设O为坐标原点,直线x2与抛物线C:y22px(p0)交于D,E两点,若ODOE,则C的焦点坐标为()A BC(1,0) D(2,0)【解析】选B.将x2代入y22px(p0)得y2,由ODOE得kODkOE1,即1,得p1,所以抛物线C:y22x的焦点坐标为.5若直线l:y(a1)x1与曲线C:y2ax恰好有一个公共点,

3、试求实数a的取值集合【解析】因为直线l与曲线C恰好有一个公共点,所以方程组有唯一一组实数解,消去y,得(a1)x12ax,整理得(a1)2x2(3a2)x10(1)当a10,即a1时,方程是关于x的一元一次方程,解得x1,这时,原方程组有唯一解(2)当a10,即a1时,方程是关于x的一元二次方程令(3a2)24(a1)2a(5a4)0,解得a0或a.当a0时,原方程组有唯一解当a时,原方程组有唯一解.综上实数a的取值集合是. (30分钟60分)一、单选题(每小题5分,共20分)1若抛物线y2x上两点A(x1,y1),B(x2,y2)关于直线yxb对称,且y1y21,则实数b的值为()A3 B3

4、 C2 D2【解析】选D.因为抛物线y2x上两点A(x1,y1),B(x2,y2)关于直线yxb对称,所以1,所以1,所以y1y21.因为y1y21,所以x1x2yy(y1y2)22y1y23,所以两点A(x1,y1),B(x2,y2)中点坐标为.代入yxb,可得b2.2已知P为抛物线y24x上一个动点,P到其准线的距离为d,Q为圆C:(x2)2(y4)21上一个动点,d|PQ|的最小值是()A5 B4C21 D1【解析】选B.点P是抛物线y24x上的点,又点P到抛物线准线的距离为d,点P到圆C:(x2)2(y4)21上的动点Q的距离为|PQ|,由抛物线定义知:点P到准线的距离等于点P到焦点F

5、的距离,如图所示,连接圆心C与F,交圆于Q.FC交抛物线的点即为使d|PQ|最小时P的位置,所以d|PQ|的最小值为:|FC|1,因为C(2,4),F(1,0),所以|FC|5,|CQ|1,所以d|PQ|的最小值为514.3(2020哈尔滨高二检测)已知抛物线C:y28x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|等于()A B3 C D2【解析】选B.设点Q到l的距离为d,则|QF|d.因为4,所以|PQ|3d.所以直线PF的斜率为2.因为F(2,0),所以直线PF的方程为y2(x2),与y28x联立,得x1,x4(舍),所以Q点横坐标为1,所以|QF|d

6、123.4(2020合肥高二检测)已知直线l与抛物线x24y交于A,B两点,0(其中O为坐标原点).若,则直线OP的斜率的取值范围是()ABCD【解析】选D.如图,设A,B,因为,则P,又0,即x1x2y1y20,即x1x20,即x1x216,设直线OP的斜率为k,则k,22,当且仅当,即4时等号成立,故k.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5(2020济南高二检测)已知抛物线C:y22px过点P(1,1),则下列结论正确的是()A点P到抛物线焦点的距离为B过点P作过抛物线焦点的直线交抛物线于点Q,则OPQ的面积为C过点P与抛物线相切的直线方

7、程为x2y10D过点P作两条斜率互为相反数的直线交抛物线于M,N点,则直线MN的斜率为定值【解析】选BCD.因为抛物线C:y22px过点P(1,1),所以p,所以抛物线方程为y2x,焦点坐标为F,对于A,1,故A错误对于B,kPF,所以lPF:y,与y2x联立得4y23y10,所以y1y2,y1y2,所以SOPQ,故B正确对于C,依题意知斜率存在,设直线方程为y1k(x1),与y2x联立得ky2y1k0,14k0,4k24k10,解得k,所以切线方程为x2y10,故C正确对于D,依题意知斜率存在,设lPM:y1k(x1),与y2x联立得:ky2y1k0,所以yM1,即yM1,则xM2,所以点M

8、,同理点N,所以kMN,故D正确6已知抛物线C:y22px的准线经过点M,过C的焦点F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则下列结论正确的是()Ap2B的最小值为16C四边形ADBE的面积的最小值为64D若直线l1的斜率为2,则AMB90【解析】选ABD.由题可知1,所以p2,故A正确设直线l1的斜率为k,则直线l2的斜率为.设A,B,D,E,直线l1:yk,直线l2:y.联立,消去y整理得k2x2xk20,所以x1x2,x1x21.所以x1x2p24.同理x3x4p244k2,从而8416,当且仅当k1时等号成立,故B正确因为S四边形ADB

9、E83232,当且仅当k1时等号成立,故C错误x1x2x1x21y1y21,将x1x23,x1x21与y1y22,y1y24代入上式,得0,所以AMB90,故D正确三、填空题(每小题5分,共10分)7已知直线l1:4x3y60和直线l2:x1,抛物线y24x上一动点P到直线l1和直线l2的距离之和的最小值是_【解析】由抛物线定义知P到准线l2:x1的距离等于它到焦点(1,0)的距离,所以P到直线l1和l2的距离之和的最小值等于焦点到l1的距离d2.答案:28(2018全国卷)已知点M和抛物线C:y24x,过C的焦点且斜率为k的直线与C交于A,B两点若AMB90,则k_【解析】由抛物线的方程y2

10、4x可知其焦点F的坐标为(1,0),所以直线AB的方程为yk(x1),由得k2x22(k22)xk20,设A(x1,y1),B(x2,y2),所以x1x2,x1x21,因为AMB90,所以(x11,y11)(x21,y21)(x11)(x21)(y11)(y21)(x11)(x21)k(x11)1k(x21)1(1kk2)(x1x2)(1k2)x1x2k22k2(1kk2)(1k2)k22k20,整理可解得k2.答案:2四、解答题(每小题10分,共20分)9(2020全国卷)已知椭圆C1:1(ab0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合过F且与x轴垂直的直线交C1于A,

11、B两点,交C2于C,D两点,且|CD|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|5,求C1与C2的标准方程【解析】(1)因为F是椭圆C1的右焦点,且ABx轴,所以F(c,0),直线AB的方程为xc,联立,得1,又因为a2b2c2,所以y22,解得y,则|AB|,因为点F(c,0)是抛物线C2的焦点,所以抛物线C2的方程为y24cx,联立,解得,所以|CD|4c,因为|CD|AB|,即4c,2b23ac,即2c23ac2a20,即2e23e20,因为0e1,解得e,因此,椭圆C1的离心率为.(2)由(1)知a2c,bc,椭圆C1的方程为1,联立,消去y并整理得3x2

12、16cx12c20,解得xc或x6c(舍去),由抛物线的定义可得|MF|cc5,解得c3.因此,曲线C1的标准方程为1,曲线C2的标准方程为y212x.10已知抛物线C:y22px(p0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|8.(1)求抛物线C的方程(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,3),求直线l的方程【解析】(1)由抛物线定义,可得58,解得p6,所以抛物线C的方程为:y212x.(2)由(1)知,F(3,0),设A(x1,y1),B(x2,y2),直线l的方程为xmy3,联立方程消去x,整理得y212my360,则144m21440

13、,且y1y212m,y1y236.因为以线段AB为直径的圆过点Q(0,3),所以0,即x1x2(y13)(y23)0,所以x1x23(y1y2)y1y290,所以(my13)(my23)3(y1y2)y1y290,所以(m21)y1y2(3m3)(y1y2)180,36m23636m236m180,所以m.所以直线l的方程为:xy3,即2xy60.【创新迁移】1已知以F为焦点的抛物线y24x上的两点A,B满足3,则弦AB的中点到准线的距离为_【解析】如图,分别过点A,B作准线x1的垂线,垂足分别为点E,G,又过点B作BKAE于点K交x轴于点H,由3,可设|m,|3m,由抛物线的性质得,|AE|

14、3m,|BG|m,|HF|2m;又由HFAE得,即,m,所以弦AB的中点到准线的距离为(|BG|AE|)|AB|4m2.答案:2设抛物线C:y24x,F为C的焦点,过F的直线l与C相交于A,B两点(1)设l的斜率为2,求|AB|的值;(2)求证:是一个定值【解析】(1)依题意得F(1,0),所以直线l的方程为y2(x1).设直线l与抛物线的交点为A(x1,y1),B(x2,y2),由消去y,整理得x23x10,所以x1x23,x1x21.方法一:|AB|5.方法二:|AB|AF|BF|x1x2p325.(2)由题意知l的斜率存在,故设直线l的方程为xky1,直线l与抛物线的交点为A(x1,y1),B(x2,y2).由消去x,整理得y24ky40,所以y1y24k,y1y24.因为(x1,y1)(x2,y2)x1x2y1y2(ky11)(ky21)y1y2k2y1y2k(y1y2)1y1y24k24k2143,所以是一个定值

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3