ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:1.99MB ,
资源ID:732726      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-732726-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山西省大同四中联盟体2020届高三数学3月模拟考试试题 理(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山西省大同四中联盟体2020届高三数学3月模拟考试试题 理(含解析).doc

1、山西省大同四中联盟体2020届高三数学3月模拟考试试题 理(含解析)第I卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分)1.已知集合,则等于( )A. B. C. D. 【答案】D【解析】【分析】对集合进行化简,分别得到两个集合表示的内容,然后取交集【详解】集合中:,解得,集合中:,即所以故选D项【点睛】本题考查了集合的基本概念,集合的运算,解二次不等式,属于简单题.2.已知复数z满足:(2i)z1i,其中i是虚数单位,则z的共轭复数为( )A. iB. iC. D. 【答案】B【解析】【分析】把等式变形,根据复数的运算先求出z,再根据共轭复数的定义得出答案.【详解】由

2、(2i)z1i,得zii.故选:B.【点睛】本题考查复数的运算法则、共轭复数的定义.3.某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( )A. f(x)B. f(x)C. f(x)D. f(x)x2ln(x21)【答案】B【解析】【分析】模拟执行程序框图可得其功能是输出的函数为奇函数,并且此函数存在零点,一一验证即可.【详解】由程序框图知该程序输出的是存在零点的奇函数,选项A、C中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A、C.选项D中的函数是偶函数,故排除D.故选:B.【点睛】本题主要考查了程序框图和算法,考查了函数的性质及其应用,属于基础题.4.数列中,且数列是等

3、差数列,则等于( )A. B. C. D. 【答案】A【解析】【分析】根据为等差数列可得,由此求得的值.【详解】由于为等差数列,故,即,解得.【点睛】本小题考查等差数列的基本性质:若为等差数列,且,则有,利用这个性质,列方程,可求得的值.5.某电视台的夏日水上闯关节目中的前四关的过关率分别为,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为()A. B. C. D. 【答案】D【解析】【分析】分两种情况讨论得到该选手能进入第四关的概率.【详解】第一种情况:该选手通过前三关,进入第四关,所以,第二种情况:该选手通过前两关

4、,第三关没有通过,再来一次通过,进入第四关,所以.所以该选手能进入第四关的概率为.故选D【点睛】本题主要考查独立事件的概率和互斥事件的概率和公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.已知正三棱柱的顶点都在球的球面上,则球的表面积为( )A. B. C. D. 【答案】D【解析】【分析】根据正三棱柱的结构特征,结合球的截面性质求得球的半径,即可得球的表面积.【详解】根据对称性,可得球心到正三棱柱的底面的距离为,球心在底面上的射影为底面的中心则由球的截面的性质可得所以有所以球的表面积为故选:D【点睛】本题考查了三棱柱与外接球关系,外接球表面积的求法,属于基础题.7.函数的函数图

5、象是( )A. B. C. D. 【答案】A【解析】【分析】首先去绝对值化得函数为,结合对数型复合函数的单调性即可得出选项.【详解】去绝对值可得,当时,单调递增,当时,单调递减,且,当时,单点递增,且,综上只有A符合,故选:A【点睛】本题主要考查函数的性质与图像,需熟记对数型函数的性质,属于中档题.8.在如图的平面图形中,已知,则的值为A. B. C. D. 0【答案】C【解析】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.详解:如图所示,连结MN,由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,结合数量积的运算法则可得:.本题选择C选项.点睛:求两个向量

6、的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用9.已知的最小值为A. B. C. D. 【答案】A【解析】【分析】将已知等式变为,展开可求得,利用两角和差公式可得,利用基本不等式求得范围,从而求得的最小值.【详解】因为,即则有 即那么当即时等号成立因此,即又, 本题正确选项:【点睛】本题考查两角和差正弦公式、正切公式的应用,基本不等式求最值问题,关键在于能够将已知角进行拆解,从而得到;求解最值问题时,常用方法是构造出基本不等式的形式,利用基本不等式求得结果.10.已知正四棱锥的侧棱长与底面边长都相等,是的

7、中点,则所成的角的余弦值为( )A. B. C. D. 【答案】C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案考点:异面直线所成的角11.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C. 2D. 【答案】B【解析】【分析】求得直线方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故

8、选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.12.设表示不大于实数的最大整数,函数,若关于的方程有且只有5个解,则实数的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】根据分段函数的解析式,先讨论当x0时,函数零点的个数为三个,再讨论当x0时,函数的零点的个数为2个,利用导数结合数形结合分析得解.【详解】首先,确定在x0上,方程f(x)=1的解.时,在,所以由取整意义有lnx=-(n+1),又即在上,恒有取n=0,,令此时有一根,当n1时,恒有f(x)-11,此时在上无根.在上,又所以在上,恒有,.n=1时,在上,

9、有n=2时,在有即所以此时有两根,这样在有三根,在显然有一根所以在有且仅有一根,由“洛必达法则”是先增后减,得或a0.单调递增,即故选A【点睛】本题主要考查利用导数研究函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,难度较大.第II卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13.已知P为椭圆上任意一点,是椭圆的两个焦点.则的最小值为_.【答案】8【解析】【分析】运用重要不等式,结合椭圆的定义可以直接求解即可.【详解】由(当且仅当时取等号).故答案为:8【点睛】本题考查了椭圆的定义,考查了重要不等式的应用,考查了数学运算能力.14.已知函数,若是

10、函数的极小值点,则实数的值为_.【答案】【解析】【分析】求出函数的导数,由题意得出,求出实数的值,并验证为函数的极小值点,综合即可得出实数的值.【详解】,定义域为,且,由题意得,解得,此时,.令,得或,列表如下:极大值极小值所以,函数在处取得极小值.故答案为:.【点睛】本题考查利用函数的极值点求参数,对于可导函数而言,导函数在极值点处的函数值为零,同时还应对极值点处导数的符号变化进行分析,考查运算求解能力,属于基础题.15.设满足约束条件若目标函数的最大值为,则的最小值为_【答案】【解析】【详解】试题分析:试题分析: 由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,

11、取等号,故的最小值为考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键16.设数列an满足a1=1,且an+1an=n+1(nN*),则数列的前10项的和为_【答案】【解析】试题分析:数列满足,且,当时,当时,上式也成立,数列的前项的和数列的前

12、项的和为故答案为考点:(1)数列递推式;(2)数列求和.三、解答题共70分.解答题营写出文字说明、证明过程或演算步骤.第1721题为必考题,每个实体考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必做题.共5小题,每小题12分,共60分17.在中,角对边分别为,且满足(1)求的面积;(2)若,求的周长【答案】(1)(2)3【解析】分析:(1)由,利用余弦定理求得,结合利用三角形面积公式求解即可;(2)根据诱导公式以及两角和的余弦公式可求得,由正弦定理可得,由余弦定理可得,从而可得结果.详解:(1),即,;(2),由题意,的周长为点睛:解三角形时,有时可用正弦定理,有时也可用余弦

13、定理,应注意用哪一个定理更方便、简捷如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到18.如图,在四面体中,分别是线段,的中点,直线与平面所成的角等于(1)证明:平面平面;(2)求二面角的余弦值【答案】()见证明; () 【解析】【分析】()先证得,再证得,于是可得平面,根据面面垂直的判定定理可得平面平面()利用几何法求解或建立坐标系,利用向量求解即可得到所求【详解】()在中,是斜边的中点,所以.因为是的中点,所以,且,所以,所以. 又因为,所以,又,所以平面,因为平面,所以平面

14、平面()方法一:取中点,连,则,因为,所以.又因为,所以平面,所以平面因此是直线与平面所成的角故,所以.过点作于,则平面,且过点作于,连接,则为二面角的平面角因为,所以,所以,因此二面角的余弦值为方法二:如图所示,在平面BCD中,作x轴BD,以B为坐标原点,BD,BA所在直线为y轴,z轴建立空间直角坐标系因为 (同方法一,过程略) 则,,所以,,设平面的法向量,则,即,取,得 设平面的法向量则,即,取,得所以,由图形得二面角为锐角,因此二面角的余弦值为【点睛】利用几何法求空间角的步骤为“作、证、求”,将所求角转化为解三角形的问题求解,注意计算和证明的交替运用利用空间向量求空间角时首先要建立适当

15、的坐标系,通过求出两个向量的夹角来求出空间角,此时需要注意向量的夹角与空间角的关系19.为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:用户编号12345

16、678910年用电量(度)1000126014001824218024232 815332544114600(1)试计算表中编号为10的用电户本年度应交电费多少元?(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列;(3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.【答案】(1)2822.38元 (2)见解析(3)k4.【解析】【分析】(1)根据各编号为10的用户所用电量,并结合每档的电价可得所用的电费(2)由题意得的所有可能取值为0,1,2,3,4,然

17、后分别求出的每个值的概率可得分布列,然后可得期望(3)由题意,故,,由此列出不等式,解不等式可得的范围,从而可得的值【详解】(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 6000.565 3(4 2002 160)0.05(4 6004200)0.32822.38(元).(2)设取到第二阶梯电量的用户数为,可知第二阶梯电量的用户有4户,则可取0,1,2,3,4.,,,,故分布列为01234所以(3)由题意可知从全市中抽取10户的用电量为第一阶梯,满足,可知, 由,解得, 所以当时概

18、率最大,故.【点睛】本题考查离散型随机变量的的分布列,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型.20.已知抛物线C:=2px经过点(1,2)过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N()求直线l的斜率的取值范围;()设O为原点,求证:为定值【答案】(1) 取值范围是(-,-3)(-3,0)(0,1)(2)证明过程见解析【解析】【详解】分析:(1)先确定p,再设直线方程,与抛物线联立,根

19、据判别式大于零解得直线l的斜率的取值范围,最后根据PA,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,再由,得,利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简可得结论.详解:解:()因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k0)由得依题意,解得k0或0k0,n0),求证:m2n4.【答案】(1);(2)证明见解析.【解析】【分析】(1)利用零点分段法讨论的取值范围,去绝对值解不等式即可. (2)根据不等式的解集求出a,再利用基本不等式即可求解.【详解】(1)当a2时,不等式为|x2|x1|4.当x2时,原不等式化为2x34,解得x,所以x;当1x2时,原不等式化为14,无解;当x0,n0)所以m2n(m2n)2,当且仅当m2n时,等号成立【点睛】本题考查了绝对值不等式的解法、基本不等式求最值,考查了分类讨论的思想,属于基础题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3