1、(数学必修1)第一章(下) 函数的基本性质提高训练C组一、选择题1已知函数,则的奇偶性依次为( )A偶函数,奇函数 B奇函数,偶函数C偶函数,偶函数 D奇函数,奇函数2若是偶函数,其定义域为,且在上是减函数,则的大小关系是( )A B C D3已知在区间上是增函数,则的范围是( )A. B. C. D.4设是奇函数,且在内是增函数,又,则的解集是( )A B C D5已知其中为常数,若,则的值等于( )A B C D子曰:温故而知新,可以为师矣。6函数,则下列坐标表示的点一定在函数f(x)图象上的是( )A B C D 二、填空题1设是上的奇函数,且当时,则当时_。2若函数在上为增函数,则实数
2、的取值范围是 。3已知,那么_。4若在区间上是增函数,则的取值范围是 。5函数的值域为_。三、解答题1已知函数的定义域是,且满足,如果对于,都有,(1)求;(2)解不等式。2当时,求函数的最小值。3已知在区间内有一最大值,求的值.4已知函数的最大值不大于,又当,求的值。第一章(下) 提高训练C组答案 一、选择题 1. D , 画出的图象可观察到它关于原点对称或当时,则当时,则2. C ,3. B 对称轴4. D 由得或而 即或5. D 令,则为奇函数 6. B 为偶函数 一定在图象上,而,一定在图象上二、填空题1 设,则,2. 且 画出图象,考虑开口向上向下和左右平移3. ,4. 设则,而,则5. 区间是函数的递减区间,把分别代入得最大、小值 三、解答题1 解:(1)令,则(2),则。2 解:对称轴当,即时,是的递增区间,;当,即时,是的递减区间,;当,即时,。3解:对称轴,当即时,是的递减区间,则,得或,而,即;当即时,是的递增区间,则,得或,而,即不存在;当即时,则,即;或 。4解:, 对称轴,当时,是的递减区间,而,即与矛盾,即不存在;当时,对称轴,而,且 即,而,即