ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:676.04KB ,
资源ID:7314      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-7314-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.3 平行线的性质教案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2.3 平行线的性质教案.docx

1、23平行线的性质1理解平行线的性质;(重点)2能运用平行线的性质进行推理证明(重点、难点)一、情境导入窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角1、2有什么数量关系?二、合作探究探究点:平行线的性质【类型一】 两直线平行,同位角相等 如图,直线a,b与直线c,d相交,若12,370,则4的度数是()A35 B70 C90 D110解析:由12,可根据“同位角相等,两直线平行”判断出ab,可得35.再根据邻补角互补可以计算出4的度数12,ab,35.370,570,418070110.故选D.方法总结:此题主要考查了平行线的判定方法与性质1,关键是掌握平行

2、线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系平行线的性质是由平行关系来寻找角的数量关系【类型二】 两直线平行,内错角相等 如图,AD,如果B20,那么C为()A40 B20 C60 D70解析:AD,ABCD.ABCD,B20,CB20.故选B.【类型三】 两直线平行,同旁内角互补 如图,已知185,295,4125,则3的度数为()A95 B85 C70 D55解析:根据“对顶角相等”得到5185,再由“同旁内角互补,两直线平行”得到ab,最后根据“两直线平行,同旁内角互补”即可得到结论如图,5185,528595180,ab,34180.4125,355.故选D

3、.【类型四】 平行线性质的实际应用 一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则ABCBCD_度解析:过B作BFAE,则CDBFAE.根据平行线的性质即可求解过B作BFAE,则CDBFAE,BCD1180.又ABAE,ABBF,ABF90,ABCBCD90180270.故答案为270.【类型五】 平行线性质与判定中的探究型问题 如图,ABCD,E,F分别是AB,CD之间的两点,且BAF2EAF,CDF2EDF.(1)判定BAE,CDE与AED之间的数量关系,并说明理由;(2)求出AFD与AED之间的数量关系解析:平行线中的拐点问题,通常需过拐点作平行线解:(1)AEDB

4、AECDE.理由如下:过点E作EGAB.ABCD,ABEGCD,AEGBAE,DEGCDE.AEDAEGDEG,AEDBAECDE;(2)同(1)可得AFDBAFCDF.BAF2EAF,CDF2EDF,BAECDEBAFCDF,AEDAFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补 平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3