ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:274KB ,
资源ID:730762      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-730762-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《学霸优课》2017数学(理)一轮对点训练:8-4 垂直的判定与性质 WORD版含解析.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《学霸优课》2017数学(理)一轮对点训练:8-4 垂直的判定与性质 WORD版含解析.DOC

1、1.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()Al1l4Bl1l4Cl1与l4既不垂直也不平行Dl1与l4的位置关系不确定答案D解析由l1l2,l2l3可知l1与l3的位置不确定,若l1l3,则结合l3l4,得l1l4,所以排除选项B、C,若l1l3,则结合l3l4,知l1与l4可能不垂直,所以排除选项A.故选D.2如下图,三棱锥PABC中,PC平面ABC,PC3,ACB.D,E分别为线段AB,BC上的点,且CDDE,CE2EB2.(1)证明:DE平面PCD;(2)求二面角APDC的余弦值解(1)证明:由PC平面ABC,DE平

2、面ABC,故PCDE.由CE2,CDDE,得CDE为等腰直角三角形,故CDDE.由PCCDC,DE垂直于平面PCD内两条相交直线,故DE平面PCD.(2)由(1)知,CDE为等腰直角三角形,DCE.如下图,过D作DF垂直CE于F,易知DFFCFE1,又已知EB1,故FB2.由ACB得DFAC,故ACDF.以C为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A,E(0,2,0),D(1,1,0),(1,1,0),(1,1,3),.设平面PAD的法向量为n1(x1,y1,z1),由n10,n10,得故可取n1(2,1,1)由(1)可知D

3、E平面PCD,故平面PCD的法向量n2可取为,即n2(1,1,0),从而法向量n1,n2的夹角的余弦值为cosn1,n2,故所求二面角APDC的余弦值为.3如图,在四棱锥AEFCB中,AEF为等边三角形,平面AEF平面EFCB,EFBC,BC4,EF2a,EBCFCB60,O为EF的中点(1)求证:AOBE;(2)求二面角FAEB的余弦值;(3)若BE平面AOC,求a的值解(1)证明:因为AEF是等边三角形,O为EF的中点,所以AOEF.又因为平面AEF平面EFCB,AO平面AEF,所以AO平面EFCB.所以AOBE.(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OGEF.由(

4、1)知AO平面EFCB,又OG平面EFCB,所以OAOG.如右图建立空间直角坐标系Oxyz,则E(a,0,0),A(0,0,a),B(2,(2a),0),(a,0,a),(a2,(a2),0)设平面AEB的法向量为n(x,y,z),则即令z1,则x,y1.于是n(,1,1)平面AEF的法向量为p(0,1,0)所以cosn,p.由题知二面角FAEB为钝角,所以它的余弦值为.(3)因为BE平面AOC,所以BEOC,即0.因为(a2,(a2),0),(2,(2a),0),所以2(a2)3(a2)2.由0及0a2,解得a.4如图1,在直角梯形ABCD中,ADBC,BAD,ABBC1,AD2,E是AD的

5、中点,O是AC与BE的交点将ABE沿BE折起到A1BE的位置,如图2.(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求平面A1BC与平面A1CD夹角的余弦值解(1)证明:在图1中,因为ABBC1,AD2,E是AD的中点,BAD,所以BEAC.即在图2中,BEOA1,BEOC,从而BE平面A1OC,又CDBE,所以CD平面A1OC.(2)由已知,平面A1BE平面BCDE,又由(1)知,BEOA1,BEOC,所以A1OC为二面角A1BEC的平面角,所以A1OC.如下图,以O为原点,建立空间直角坐标系,因为A1BA1EBCED1,BCED,所以B,E,A1,C,得,(,0,0)设平

6、面A1BC的法向量n1(x1,y1,z1),平面A1CD的法向量n2(x2,y2,z2),平面A1BC与平面A1CD夹角为,则得取n1(1,1,1);得取n2(0,1,1),从而cos|cosn1,n2|,即平面A1BC与平面A1CD夹角的余弦值为.5九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑如图,在阳马PABCD中,侧棱PD底面ABCD,且PDCD,过棱PC的中点E,作EFPB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,

7、说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值解(1)证明:因为PD底面ABCD,所以PDBC,由底面ABCD为长方形,有BCCD,而PDCDD,所以BC平面PCD.而DE平面PCD,所以BCDE.又因为PDCD,点E是PC的中点,所以DEPC.而PCBCC,所以DE平面PBC.而PB平面PBC,所以PBDE.又PBEF,DEEFE,所以PB平面DEF.由DE平面PBC,PB平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为DEB,DEF,EFB,DFB.(2)如图,在面PBC内,延长BC与FE交于点G,则DG是平面DEF与

8、平面ABCD的交线由(1)知,PB平面DEF,所以PBDG.又因为PD底面ABCD,所以PDDG.而PDPBP,所以DG平面PBD.故BDF是面DEF与面ABCD所成二面角的平面角,设PDDC1,BC,有BD,在RtPDB中,由DFPB,得DPFFDB,则tantanDPF,解得.所以.故当面DEF与面ABCD所成二面角的大小为时,.6.如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB60,AB2,AD1,PD底面ABCD.(1)证明:PABD;(2)若PDAD,求二面角APBC的余弦值解(1)证明:因为DAB60,AB2AD2,由余弦定理得BD.从而BD2AD2AB2,BDAD.P

9、D平面ABCD,BD平面ABCD,PDBD.又ADPDD,所以BD平面PAD,所以PABD.(2)如图,以D为坐标原点,DA,DB,DP分别为x,y,z的正半轴建立空间直角坐标系Dxyz.则A(1,0,0),B(0,0),C(1,0),P(0,0,1),(1,0),(0,1),(1,0,0),设平面PAB的法向量为n(x,y,z),则即因此,令y1,则n(,1,)设平面PBC的法向量为m(x0,y0,z0),则即可取m(0,1,),则cosm,n,由图知二面角APBC为钝角,故二面角APBC的余弦值为.7如图,四边形ABCD为正方形,PD平面ABCD,DPC30,AFPC于点F,FECD,交P

10、D于点E.(1)证明:CF平面ADF;(2)求二面角DAFE的余弦值解(1)证明:PD平面ABCD,PDAD,又CDAD,PDCDD,AD平面PCD,ADPC,又AFPC,AFADA,PC平面ADF,即CF平面ADF.(2)设AB1,则RtPDC中,CD1,DPC30,PC2,PD,由(1)知CFDF,DF, CF,又FECD,DE,同理,EF,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0)设m(x,y,z)是平面AEF的法向量,则又令x4,得z,故m(4,0,),由(1)知平面ADF的一个法向量为(,1,0),设二面角DAFE的平面角为

11、,可知为锐角,cos|cosm,|,故二面角DAFE的余弦值为.8.如图,在三棱柱ABCA1B1C1中,侧面AA1C1C底面ABC,AA1A1CACBC2,ACBC,点S是AA1延长线上一点,EF是平面SBC与平面A1B1C1的交线(1)求证:EFAC1;(2)求直线A1C与平面A1ABB1所成角的正弦值解(1)证明:在三棱柱ABCA1B1C1中,平面ABC平面A1B1C1,又平面ABC平面SBCBC,平面A1B1C1平面SBCEF,EFBC.平面AA1C1C平面ABC,且ACBC,BC平面ACC1A1.又AC1平面ACC1A1,BCAC1,EFAC1.(2)取A1C1的中点D1,连CD1,AA1A1CAC2,CC1A1CA1C12,CD1A1C1.由(1)知BC平面ACC1A1.以点C为原点,CA,CB、CD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则B(0,2,0),C(0,0,0),A1(1,0,),A(2,0,0)(1,0,)设平面A1ABB1的法向量为n,则nn0,而(1,0,),(2,2,0),可求得平面A1ABB1的一个法向量为n(3,3,),|cos,n|.故直线A1C与平面A1ABB1所成角的正弦值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3