ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:659KB ,
资源ID:728618      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-728618-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017-2018学年高中数学(人教B版 选修2-3)教师用书:第2章 概率-2-1-2-1-1 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017-2018学年高中数学(人教B版 选修2-3)教师用书:第2章 概率-2-1-2-1-1 .doc

1、2.1离散型随机变量及其分布列2.1.1离散型随机变量1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)基础初探教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“”,错误的打“”)(1)随机变量的

2、取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量,的取值是0,1.(3)因为由

3、随机变量的定义可知,该说法正确.(4)因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)(2)(3)(4)(5)质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 小组合作型随机变量的概念 判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年5月1日至10月1日期间所查酒驾的人数;

4、(3)2016年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【自主解答】(1)旅客人数可能是0,1,2,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验

5、之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.再练一题1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答

6、案】(1)B(2)C离散型随机变量的判定指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(4)江西九江市长江水位监测站所测水位在(0,29这一范围内变化,该水位站所测水位.【精彩点拨】【自主解答】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29这一范围内变化,不能按次序一一列举.“三步法”判

7、定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.再练一题2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为. 【导学号:62980032】(1)列表说明可能出现的结果与对应的的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分的可能取值,并判定是否为离散型随机变量.【解】(1)0123结果取得3个黑球取得1个白球,2个黑球取得2个白球,1个黑球取得3个白球(2)由题意可得:56,而可能的取值范围为0

8、,1,2,3,所以对应的各值是:506,516,526,536.故的可能取值为6,11,16,21.显然,为离散型随机变量.探究共研型随机变量的可能取值及试验结果探究1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】可以.用数字1和0分别表示正面向上和反面向上.探究2在一块地里种10棵树苗,设成活的树苗数为X,则X可取哪些数字?【提示】X0,1,2,3,4,5,6,7,8,9,10.探究3抛掷一枚质地均匀的骰子,出现向上的点数为,则“4”表示的随机事件是什么?【提示】“4”表示出现的点数为4点,5点,6点.写出下列随机变量可能取的值,并说明随机变

9、量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】【自主解答】(1)设所需的取球次数为X,则X1,2,3,4,10,11,Xi表示前i1次取到红球,第i次取到白球,这里i1,2,11.(2)设所取卡片上的数字和为X,则X3,4,5,11.X3,表示“取出标有1,2的两张卡片”;X4,表示“取出标有1,3的两张卡片”;X5,表示“取出标有2,3或标有1,4的两张卡片”;X6,表示“取出标有2,4或1,5的两张卡片”

10、;X7,表示“取出标有3,4或2,5或1,6的两张卡片”;X8,表示“取出标有2,6或3,5的两张卡片”;X9,表示“取出标有3,6或4,5的两张卡片”;X10,表示“取出标有4,6的两张卡片”;X11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.再练一题3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2016年北京大学的自主招生中,参

11、与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用表示.【解】(1)X可能取值0,1,2,3,4,5,Xi表示面试通过的有i人,其中i0,1,2,3,4,5.(2)可能取值为0,1,当0时,表明该射手在本次射击中没有击中目标;当1时,表明该射手在本次射击中击中目标.构建体系1.给出下列四个命题:15秒内,通过某十字路口的汽车的数量是随机变量;在一段时间内,某候车室内候车的旅客人数是随机变量;一条河流每年的最大流量是随机变量;一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.

12、3D.4【解析】由随机变量定义可以直接判断都是正确的.故选D.【答案】D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为,则5表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】5表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是_. 【导学号:62980033】【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,

13、5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为,记甲击中目标的次数为,则的可能取值为_.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3,10.Xk(k1,2,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.Xk表示取出k个红球,4k个白球,其中k0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X2表示(1,1);X4表示(1,3),(2,2),(3,1);X12表示(6,6).X的可能取值为2,4,6,8,10,12.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3