1、常考问题13圆锥曲线的综合问题(建议用时:50分钟)1(2013济南模拟)若双曲线1(a0,b0)与直线yx无交点,则离心率e的取值范围是_解析因为双曲线的渐近线为yx,要使直线yx与双曲线无交点,则直线yx应在两渐近线之间,所以有,即ba,所以b23a2,c2a23a2,即c24a2,e24,所以1e2.答案(1,22P为双曲线1的右支上一点,M、N分别是圆(x5)2y24和(x5)2y21上的点,则PMPN的最大值为_解析设双曲线的两个焦点分别是F1(5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时PMPN(PF
2、12)(PF21)639答案93已知椭圆1(0b0,b0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围是_解析由题意知,ABE为等腰三角形若ABE是锐角三角形,则只需要AEB为锐角根据对称性,只要AEF即可直线AB的方程为xc,代入双曲线方程得y2,取点A,则|AF|,|EF|ac,只要|AF|EF|就能使AEF,即ac,即b2a2ac,即c2ac2a20,即e2e20,即1e1,故1eb0)的一个顶点,C1的长轴是圆C2:x2y24的直径l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两
3、点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程解(1)由题意得所以椭圆C1的方程为y21.(2)设A(x1,y1),B(x2,y2),D(x0,y0)由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为ykx1.又圆C2:x2y24,故点O到直线l1的距离d,所以|AB|22.又l2l1,故直线l2的方程为xkyk0.由消去y,整理得(4k2)x28kx0,故x0.所以|PD|.设ABD的面积为S,则S|AB|PD|,所以S,当且仅当k时取等号所以所求直线l1的方程为yx1.11(2013郑州模拟)已知椭圆的焦点坐标为F1(1,0),F
4、2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|3.(1)求椭圆的方程;(2)过F2的直线l与椭圆交于不同的两点M,N,则F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由解(1)设椭圆方程为1(ab0),由焦点坐标可得c1.由|PQ|3,可得3.又a2b21,得a2,b.故椭圆方程为1.(2)设M(x1,y1),N(x2,y2),不妨令y10,y20,所以f(t)在1,)上单调递增,有f(t)f(1)4,SF1MN3,当t1,m0时,SF1MN3,又SF1MN4R,Rmax.这时所求内切圆面积的最大值为.故F1MN内切圆面积的最大值为,且此时直线l的方程为x1.备课札记: