1、1在等差数列an中,若a24,a42,则a6()A1 B0C1 D6答案B解析设数列an的公差为d,由a4a22d,a24,a42,得242d,d1,a6a42d0.故选B.2.已知an是等差数列,公差d不为零,前n项和是Sn.若a3,a4,a8成等比数列,则()Aa1d0,dS40Ba1d0,dS40,dS40Da1d0答案B解析由aa3a8,得(a12d)(a17d)(a13d)2,整理得d(5d3a1)0,又d0,a1d,则a1dd20,又S44a16dd,dS4d20,故选B.3设an是首项为a1,公差为1的等差数列,Sn为其前n项和若S1,S2,S4成等比数列,则a1的值为_答案解析
2、由已知得S1a1,S2a1a22a11,S44a1(1)4a16,而S1,S2,S4成等比数列,所以(2a11)2a1(4a16),整理得2a110,解得a1.4.已知数列an的前n项和为Sn,a11,an0,anan1Sn1,其中为常数 (1)证明:an2an;(2)是否存在,使得an为等差数列?并说明理由解(1)证明:由题设,anan1Sn1,an1an2Sn11.两式相减得an1(an2an)an1.由于an10,所以an2an.(2)由题设,a11,a1a2S11,可得a21.由(1)知,a31.令2a2a1a3,解得4.故an2an4,由此可得a2n1是首项为1,公差为4的等差数列,a2n14n3;a2n是首项为3,公差为4的等差数列,a2n4n1.所以an2n1,an1an2.因此存在4,使得数列an为等差数列