1、1.如图,ABC是圆的内接三角形,BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:BD平分CBF;FB2FDFA;AECEBEDE;AFBDABBF.则所有正确结论的序号是()A BC D答案D解析由弦切角定理知FBDBAD,AD平分BAC,CBDCAD,BADDBC.FBDCBD,即BD平分CBF,正确;由切割线定理知,正确;由相交弦定理知,AEEDBEEC,不正确;ABFBDF,AFBDABBF,正确故选D.2如图,在平行四边形ABCD中,点E在AB上且EB2AE,AC与DE交于点F,则_.答案9解析EB2AE,AB3AE,又
2、DFCEFA,9.3如图,在ABC中,ABAC,ABC的外接圆O的弦AE交BC于点D.求证:ABDAEB.证明因为ABAC,所以ABDC.又因为CE,所以ABDE,又BAE为公共角,可知ABDAEB.4如图,O为等腰三角形ABC内一点,O与ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点(1)证明:EFBC;(2)若AG等于O的半径,且AEMN2,求四边形EBCF的面积解(1)证明:由于ABC是等腰三角形,ADBC,所以AD是CAB的平分线又因为O分别与AB,AC相切于点E,F,所以AEAF,故ADEF.从而EFBC.(2)由(1)知,AEAF,AD
3、EF,故AD是EF的垂直平分线又EF为O的弦,所以O在AD上连接OE,OM,则OEAE.由AG等于O的半径得AO2OE,所以OAE30.因此ABC和AEF都是等边三角形因为AE2,所以AO4,OE2.因为OMOE2,DMMN,所以OD1.于是AD5,AB.所以四边形EBCF的面积为2(2)2.5.如图,AB为O的直径,直线CD与O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:(1)FEBCEB;(2)EF2ADBC.证明(1)由直线CD与O相切,得CEBEAB.由AB为O的直径,得AEEB,从而EABEBF.又EFAB,得FEBEBF,从而FEBEAB.故FEBCEB.(2)由BCCE,EFAB,FEBCEB,BE是公共边,得RtBCERtBFE,所以BCBF.类似可证:RtADERtAFE,得ADAF.又在RtAEB中,EFAB,故EF2AFBF,所以EF2ADBC.